阿里面试题 hashtable 如何解决冲突

Hashtable的结构,采用的是数据结构中所说的链地址法处理冲突的方法 
 
从上面的结构图可以看出,Hashtable的实质就是一个数组+链表。图中的Entry就是链表的实现,Entry的结构中包含了对自己的另一个实例的引用next,用以指向另外一个Entry。而图中标有数字的部分是一个Entry数组,数字就是这个Entry数组的index。那么往 Hashtable增加键值对的时候,index会根据键的hashcode、Entry数组的长度共同决定,从而决定键值对存放在Entry数组的哪个位置。从这种意义来说,当键一定,Entry数组的长度一定的情况下,所得到的index肯定是相同的,也就是说插入顺序应该不会影响输出的顺序才对。然而,还有一个重要的因素没有考虑,就是计算index出现相同值的情况。譬如代码中 "sichuan" 和 "anhui",所得到的index是相同的,在这个时候,Entry的链表功能就发挥作用了:put方法通过Entry的next属性获得对另外一个 Entry的引用,然后将后来者放入其中。根据debug得出的结果,"sichuan", "anhui"的index同为2,"hunan"的index为6,"beijing"的index为1,在输出的时候,会以index递减的方式获得键值对。很明显,会改变的输出顺序只有"sichuan"和"anhui"了,也就是说输出只有两种可能:"hunan" - "sichuan" - "anhui" - "beijing"和"hunan" - "anhui" - "sichuan" - "beijing"。以下是运行了示例代码之后,Hashtable的结果: 
 
在Hashtable的实现代码中,有一个名为rehash的方法用于扩充Hashtable的容量。很明显,当rehash方法被调用以后,每一个键值对相应的index也会改变,也就等于将键值对重新排序了。这也是往不同容量的Hashtable放入相同的键值对会输出不同的键值对序列的原因。在Java中,触发rehash方法的条件很简单:hahtable中的键值对超过某一阀值。默认情况下,该阀值等于hashtable中Entry数组的长度×0.75。 (注意entry 数组里存值了,而传统hash 链表链地址法里没有存值)



自 Java 2 平台 v1.2 以来,此类已经改进为可以实现 Map,因此它变成了 Java Collections Framework 的一部分。与新集合的实现不同,Hashtable 是同步的。 

由迭代器返回的 Iterator 和由所有 Hashtable 的“collection 视图方法”返回的 Collection 的 listIterator 方法都是快速失败 的:在创建 Iterator 之后,如果从结构上对 Hashtable 进行修改,除非通过 Iterator 自身的移除或添加方法,否则在任何时间以任何方式对其进行修改,Iterator 都将抛出 ConcurrentModificationException。因此,面对并发的修改,Iterator 很快就会完全失败,而不冒在将来某个不确定的时间发生任意不确定行为的风险。由 Hashtable 的键和值方法返回的 Enumeration 不 是快速失败的。 

注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误做法:迭代器的快速失败行为应该仅用于检测程序错误。 
直接看HashTable.java 
解决哈希表的冲突-开放地址法和链地址法 
在实际应用中,无论如何构造哈希函数,冲突是无法完全避免的。 

1 开放地址法 (顾名思义,可以占用本来应该其他数据占用的地址)


这个方法的基本思想是:当发生地址冲突时,按照某种方法继续探测哈希表中的其他存储单元,直到找到空位置为止。这个过程可用下式描述: 
H i ( key ) = ( H ( key )+ d i ) mod m ( i = 1,2,…… , k ( k ≤ m – 1)) 
其中: H ( key ) 为关键字 key 的直接哈希地址, m 为哈希表的长度, di 为每次再探测时的地址增量。 
采用这种方法时,首先计算出元素的直接哈希地址 H ( key ) ,如果该存储单元已被其他元素占用,则继续查看地址为 H ( key ) + d 2 的存储单元,如此重复直至找到某个存储单元为空时,将关键字为 key 的数据元素存放到该单元。
增量 d 可以有不同的取法,并根据其取法有不同的称呼: 
( 1 ) d i = 1 , 2 , 3 , …… 线性探测再散列; 
( 2 ) d i = 1^2 ,- 1^2 , 2^2 ,- 2^2 , k^2, -k^2…… 二次探测再散列; 
( 3 ) d i = 伪随机序列 伪随机再散列; 

例1设有哈希函数 H ( key ) = key mod 7 ,哈希表的地址空间为 0 ~ 6 ,对关键字序列( 32 , 13 , 49 , 55 , 22 , 38 , 21 )按线性探测再散列和二次探测再散列的方法分别构造哈希表。 
解: 
( 1 )线性探测再散列: 
32 % 7 = 4 ; 13 % 7 = 6 ; 49 % 7 = 0 ; 
55 % 7 = 6 发生冲突,下一个存储地址( 6 + 1 )% 7 = 0 ,仍然发生冲突,再下一个存储地址:( 6 + 2 )% 7 = 1 未发生冲突,可以存入。 
22 % 7 = 1 发生冲突,下一个存储地址是:( 1 + 1 )% 7 = 2 未发生冲突; 
38 % 7 = 3 ; 
21 % 7 = 0 发生冲突,按照上面方法继续探测直至空间 5 ,不发生冲突,所得到的哈希表对应存储位置: 
下标: 0 1 2 3 4 5 6 
49 55 22 38 32 21 13 
( 2 )二次探测再散列: 
下标: 0 1 2 3 4 5 6 
49 22 21 38 32 55 13 
   注意:对于利用开放地址法处理冲突所产生的哈希表中删除一个元素时需要谨慎,不能直接地删除,因为这样将会截断其他具有相同哈希地址的元素的查找地址,所以,通常采用设定一个特殊的标志以示该元素已被删除。 
2 链地址法 

链地址法解决冲突的做法是:如果哈希表空间为 0 ~ m - 1 ,设置一个由 m 个指针分量组成的一维数组 ST[ m ], 凡哈希地址为 i 的数据元素都插入到头指针为 ST[ i ] 的链表中。这种方法有点近似于邻接表的基本思想,且这种方法适合于冲突比较严重的情况。 

例 2 设有 8 个元素 { a,b,c,d,e,f,g,h } ,采用某种哈希函数得到的地址分别为: {0 , 2 , 4 , 1 , 0 , 8 , 7 , 2} ,当哈希表长度为 10 时,采用链地址法解决冲突的哈希表如下图所示。 
 
阅读更多
个人分类: java
上一篇KMP 模式匹配算法原理分析
下一篇JAVA—sleep()和wait()的区别
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭