以下面一个数据为例:
cor
cor就是生成相关性系数矩阵,可以自己选择相关性的算法。
cov
cov计算的是协方差矩阵,这里的值也就是方差和期望方差之间的差异。简单理解,就是统计量。
由此可以看出,cor算出来的是相关性系数,在【-1, 1】之间变化,而cov是具体的统计量,所以跟原始数据的大小密切相关,所以SF-36&SF-36是371,而PRI&PRI只有22。
但是cov和cor的正负方向都是一样的,因为两者都是评估相关性。
简单理解,就是cov和cor,都是同一个统计,前者类似于统计量,后者类似于p值(只是简单举例)。
pcor
cor和cov都是计算的相关性,当我们要计算偏相关时候,我们就需要ppcor包。
可以看出,pcor是把矩阵其他的变量作为协变量,去计算两两的全偏相关 (partial correlation),也就是净相关性。
还有一种半偏相关(semi-partial correlation),就是在计算X1和X2的相关性时,在仅排除X2与其他变量的影响后,去与X1做相关。这种不在今天的讨论范围之内。