2.3 logistic 回归损失函数

为了训练www和bbb,我们需要定义一个损失函数. y^(i)=σ(wTx(i)+b)\hat{y}^{(i)} = \sigma(w^Tx^{(i)}+b)y^​(i)=σ(wTx(i)+b) Given{(x(1),y(1)),...,(x(m),y(m))}Given{\{(x^{(1)}...

2018-12-25 22:09:16

阅读数 42

评论数 0

矩阵投影

2*2的矩阵代表了 二维空间中的空间转换 2*3的矩阵代表了 3维空间向二维空间的投影 3*2的矩阵代表了 2维空间向三维空间的投影

2018-06-22 15:48:43

阅读数 209

评论数 0

线性代数 矩阵乘法

矩阵乘法(matrix multiplication) Am∗nBn∗p=Cm∗pAm∗nBn∗p=Cm∗pA_{m*n}B_{n*p}=C_{m*p} [a11a21a12a22][a11a12a21a22] \left[ \begin{matrix} a_{11} &am...

2018-03-21 17:41:00

阅读数 1340

评论数 0

线性代数概述

 2x−y    =0 2x−y   &nbsp...

2018-03-21 15:13:10

阅读数 188

评论数 0

线性代数 矩阵消元与回代

determinants(行列式) elimination(消元法) 通过消元法我们可以知道一个矩阵什么时候是好的矩阵,什么时候是坏的矩阵 x+2y+z=2x+2y+z=2x + 2y + z = 2 3x+8y+z=123x+8y+z=123x + 8y + z =12 4y+z=24...

2018-03-21 15:02:21

阅读数 1430

评论数 1

python与线性代数 矩阵

1.标量相乘 每个元素与标量相乘 设A,B,CA,B,CA,B,C是相同维数的矩阵,rrr与sss为数,则由 a. A+BA+BA+B = B+AB+AB+A b. (A+B)+C=A+(B+C)(A+B)+C=A+(B+C)(A+B)+C = A+(B+C) c. (A+0)=A(A+...

2018-03-19 15:09:45

阅读数 214

评论数 0

python与线性代数 线性变换

矩阵变换 由RnRnR^n到RmRmR^m的一个变换(或称函数,映射)TTT是一个规则,它把RnRnR^n中每个向量xxx对应以RmRmRm中的一个向量T(x)T(x)T(x).集RnRnR^n称为TTT的定义域,而RmRmR^m称为TTT的余定义域(或取值空间).符号T:Rn−&amp...

2018-03-16 16:16:45

阅读数 566

评论数 0

python与线性代数 线性无关

矩阵AAA的各列线性无关,当且仅当方程Ax=0Ax=0Ax=0仅有平凡解 两个向量的集合{v1,v2}{v1,v2}\{v_1,v_2\}线性相关,当且仅当其中一个向量是另一个向量的倍数.这个集合线性无关,当且仅当其中任一个向量都不是另一个向量的倍数. 从几何意义上看,两个向量线性相关,当且仅...

2018-03-16 14:40:33

阅读数 302

评论数 0

python与线性代数 线性方程组的解集

齐次线性方程组 齐次线性方程组(homogeneous systems)是指,Ax=0Ax=0Ax = 0,其中AAA是m∗nm∗nm*n矩阵而000是RmRmR^m中的零向量.这样的方程至少有一个解,即x=0x=0x=0,这个解称为它的平凡解(trival solution).而重要的是研究它...

2018-03-16 14:10:11

阅读数 399

评论数 0

python与线性代数 矩阵方程

若AAA是m∗nm∗nm*n矩阵,它的各列为a1,...,ana1,...,ana_1,...,a_n.若xxx是RnRnR^n中向量,则AAA与xxx的积,记为AxAxAx,就是AAA的各列以xxx中对应元素为权的线性组合,即 AxAxAx = [a1a2…an][a1a2…an][a_1 a...

2018-03-16 13:49:02

阅读数 981

评论数 0

python与线性代数 向量方程

R2R2R^2 所有两个元素的向量的集记为R2R2R^2,RRR表示向量中的元素是实数,而指数2表示每个向量包含两个元素.元素用w1,w2w1,w2w1,w2表示,代表任意实数. R2R2R^2中两个向量相等,当且仅当对应元素相等,既向量是有序的实数对 向量相加,是对应位置的元素相加 向量...

2018-03-16 13:23:33

阅读数 329

评论数 0

python与线性代数 解线性方程组

阶梯型矩阵: 1.非零行在零行之上 2.某一行的先导元素(leading entry)所在的列位于前一行先导元素的右面 3.某一先导元素所在列下方元素都是零 简化阶梯型(reduced echelon form) 1.先导元素是1 2.每一行先导元素1是该元素所在列的唯一非零元素 一...

2018-03-16 11:32:55

阅读数 770

评论数 0

pyhton与基础数学

python与线性代数 矩阵与方程组 python与线性代数 解线性方程组 python与线性代数 向量方程 python与线性代数 矩阵方程 python与线性代数 线性方程组的解集 python与线性代数 线性无关 python与线性代数 线性变换 python与线性...

2018-03-16 10:19:26

阅读数 1096

评论数 1

python与线性代数 矩阵与方程组

线性方程(linear equation) a1x1+a2x2+...+anxn=ba1x1+a2x2+...+anxn=ba_1x_1+a_2x_2+...+a_nx_n = b b与系数a1,a2a1,a2a_1,a_2是实数或复数 系数(coefficients) 实数(real n...

2018-03-16 10:18:44

阅读数 544

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭