数据挖掘

机器学习 基础知识 机器学习 线性回归 机器学习 过度拟合 机器学习实战(MachineLearinginAction) 第一章 机器学习实战(MachineLearinginAction) 第二章 k-近邻算法 机器学习实战(MachineLearinginAction) 第三章 决策...

2018-03-12 13:30:59

阅读数 565

评论数 0

Series.str.split([pat, n, expand])

Series.str.split([pat, n, expand]) Series.str会将每一行中的内容当成字符串来看待。 series.str.split(” “).str则每一行的列表当成字符 Series.str[0]是返回每一行第一个字符 series.str.split(&am...

2018-03-24 21:56:30

阅读数 312

评论数 0

线性代数 矩阵乘法

矩阵乘法(matrix multiplication) Am∗nBn∗p=Cm∗pAm∗nBn∗p=Cm∗pA_{m*n}B_{n*p}=C_{m*p} [a11a21a12a22][a11a12a21a22] \left[ \begin{matrix} a_{11} &am...

2018-03-21 17:41:00

阅读数 1312

评论数 0

线性代数概述

 2x−y    =0 2x−y   &nbsp...

2018-03-21 15:13:10

阅读数 184

评论数 0

线性代数 矩阵消元与回代

determinants(行列式) elimination(消元法) 通过消元法我们可以知道一个矩阵什么时候是好的矩阵,什么时候是坏的矩阵 x+2y+z=2x+2y+z=2x + 2y + z = 2 3x+8y+z=123x+8y+z=123x + 8y + z =12 4y+z=24...

2018-03-21 15:02:21

阅读数 1415

评论数 1

Matplotlib 三维图像 API

线图(Line plots) Axes3D.plot(xs, ys, *args, **kwargs) 参数 描述 xs,ys 一维数组 zs z value(s), either one for all points or one for each...

2018-03-20 10:56:42

阅读数 139

评论数 0

Matplotlib 三维图像 入门

开始 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() # 创建一个画板 ax = Axes3D(fig) # 转换为3维图像 线图 import ma...

2018-03-20 10:38:30

阅读数 446

评论数 0

python与线性代数 矩阵

1.标量相乘 每个元素与标量相乘 设A,B,CA,B,CA,B,C是相同维数的矩阵,rrr与sss为数,则由 a. A+BA+BA+B = B+AB+AB+A b. (A+B)+C=A+(B+C)(A+B)+C=A+(B+C)(A+B)+C = A+(B+C) c. (A+0)=A(A+...

2018-03-19 15:09:45

阅读数 213

评论数 0

python与线性代数 线性变换

矩阵变换 由RnRnR^n到RmRmR^m的一个变换(或称函数,映射)TTT是一个规则,它把RnRnR^n中每个向量xxx对应以RmRmRm中的一个向量T(x)T(x)T(x).集RnRnR^n称为TTT的定义域,而RmRmR^m称为TTT的余定义域(或取值空间).符号T:Rn−&amp...

2018-03-16 16:16:45

阅读数 558

评论数 0

python与线性代数 线性无关

矩阵AAA的各列线性无关,当且仅当方程Ax=0Ax=0Ax=0仅有平凡解 两个向量的集合{v1,v2}{v1,v2}\{v_1,v_2\}线性相关,当且仅当其中一个向量是另一个向量的倍数.这个集合线性无关,当且仅当其中任一个向量都不是另一个向量的倍数. 从几何意义上看,两个向量线性相关,当且仅...

2018-03-16 14:40:33

阅读数 298

评论数 0

python与线性代数 线性方程组的解集

齐次线性方程组 齐次线性方程组(homogeneous systems)是指,Ax=0Ax=0Ax = 0,其中AAA是m∗nm∗nm*n矩阵而000是RmRmR^m中的零向量.这样的方程至少有一个解,即x=0x=0x=0,这个解称为它的平凡解(trival solution).而重要的是研究它...

2018-03-16 14:10:11

阅读数 389

评论数 0

python与线性代数 矩阵方程

若AAA是m∗nm∗nm*n矩阵,它的各列为a1,...,ana1,...,ana_1,...,a_n.若xxx是RnRnR^n中向量,则AAA与xxx的积,记为AxAxAx,就是AAA的各列以xxx中对应元素为权的线性组合,即 AxAxAx = [a1a2…an][a1a2…an][a_1 a...

2018-03-16 13:49:02

阅读数 958

评论数 0

python与线性代数 向量方程

R2R2R^2 所有两个元素的向量的集记为R2R2R^2,RRR表示向量中的元素是实数,而指数2表示每个向量包含两个元素.元素用w1,w2w1,w2w1,w2表示,代表任意实数. R2R2R^2中两个向量相等,当且仅当对应元素相等,既向量是有序的实数对 向量相加,是对应位置的元素相加 向量...

2018-03-16 13:23:33

阅读数 324

评论数 0

python与线性代数 解线性方程组

阶梯型矩阵: 1.非零行在零行之上 2.某一行的先导元素(leading entry)所在的列位于前一行先导元素的右面 3.某一先导元素所在列下方元素都是零 简化阶梯型(reduced echelon form) 1.先导元素是1 2.每一行先导元素1是该元素所在列的唯一非零元素 一...

2018-03-16 11:32:55

阅读数 749

评论数 0

pyhton与基础数学

python与线性代数 矩阵与方程组 python与线性代数 解线性方程组 python与线性代数 向量方程 python与线性代数 矩阵方程 python与线性代数 线性方程组的解集 python与线性代数 线性无关 python与线性代数 线性变换 python与线性...

2018-03-16 10:19:26

阅读数 1080

评论数 1

python与线性代数 矩阵与方程组

线性方程(linear equation) a1x1+a2x2+...+anxn=ba1x1+a2x2+...+anxn=ba_1x_1+a_2x_2+...+a_nx_n = b b与系数a1,a2a1,a2a_1,a_2是实数或复数 系数(coefficients) 实数(real n...

2018-03-16 10:18:44

阅读数 527

评论数 0

选择排序

给定一个长度为N的序列,初始L是最低的边界初始值是0: 1.在[L…N-1]中,查找最小的元素X的位置 2.交换X元素和第L个元素 3.将L加1,重复步骤1,2,直到L=N-2 复杂度O(N2)O(N2)O(N^2) def selection_sort(alist): n ...

2018-03-15 18:04:44

阅读数 85

评论数 0

python 数据结构 二叉树

概念 二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree) 性质 性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0) 性质2: 深度为k的二叉树至多有2^k - 1个结点(...

2018-03-15 17:50:10

阅读数 238

评论数 0

python 数据结构 树的概念

树(英语:tree)是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 通常使用链式表来实现. 它具有以下的特点: 1.每个节点有零个或多个子节点; 2.没有父节点的节点称为根节点; ...

2018-03-15 17:19:08

阅读数 259

评论数 0

Logistic回归

二元分类问题 因变量(dependant variable)可以分为两个类,负向类(negative class)和正向类(positive class),既因变量y∈{0,1}y∈{0,1}y\in\{0,1\} 线性回归也可以预测,分类问题,但是由于线性是两边无限延伸的,所以不太合适. ...

2018-03-15 11:26:57

阅读数 116

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭