1.14 关于梯度检验实现的注记

2018-12-31 10:13:24

阅读数 26

评论数 0

1.13 梯度检验

2018-12-31 10:12:43

阅读数 26

评论数 0

1.12 梯度的数值逼近

2018-12-31 10:12:06

阅读数 39

评论数 0

1.11 神经网络的权重初始化

2018-12-31 10:11:33

阅读数 21

评论数 0

1.10 梯度消失与梯度爆炸

2018-12-31 10:11:04

阅读数 24

评论数 0

1.9 归一化输入

归一化均值 归一化方差

2018-12-31 10:10:28

阅读数 49

评论数 0

1.8 其他正则化方法

2018-12-31 10:10:02

阅读数 25

评论数 0

1.7 理解 Dropout

主要用在计算机视觉领域 每次迭代都会随机剔除一些隐藏单元。

2018-12-31 10:09:26

阅读数 26

评论数 0

1.6 Dropout 正则化

过度拟合的另外一个方法dropout

2018-12-31 10:08:57

阅读数 24

评论数 0

1.5 为什么正则化可以减少过拟合?

当lambda设置过大的时候,w约等于0,也就是相当于我们将w设置为0,这样的话就消除了隐藏单元。 这样会将模型从高方差状态编程高偏差状态。

2018-12-31 10:08:27

阅读数 46

评论数 0

1.4 正则化

2018-12-31 10:08:01

阅读数 35

评论数 0

1.3 机器学习基础

首先是降低bias,至少要使模型拟合训练集,通过扩大更大的神经网络实现 然后是降低variance,采用更多的数据 然后不断的尝试 训练一个大型的神经网络基本没有坏处,只不过就是训练的时间会增加 ...

2018-12-31 10:07:36

阅读数 18

评论数 0

1.2 偏差_方差

拟合度低 是高bias 过度你和 是高variance 训练集误差和验证集误差 训练集和测试集 准确率相同时高的偏差

2018-12-31 10:07:09

阅读数 33

评论数 0

1.1 训练_开发_测试集

在最初的时候我们会有一个idea,别如有多少个隐藏层,有几个单元等等,然后尝试并运行这些代码,然后不断的调整。 自然语言,计算机视觉,语音,结构化数据(结构化数据无所不包,广告,电商,物流,计算机安全) 机器学习之初,常见的做法是将所有的数据三七分,或者6分训练集,2分验证集和2分测试集来划分 验...

2018-12-31 10:06:30

阅读数 32

评论数 0

4.7 参数 VS 超参数

超参数: 学习速率 迭代次数 隐藏层数 隐藏神经元 激活函数 其他参数 momentum mini batch 大小 规则化参数 超参数是控制参数的,在机器学习中最好正规的称调参,为调超参。 调参基本都是凭借经验,也就是说我们要一直试试试,最终获得最合适的数值。 ...

2018-12-31 10:04:28

阅读数 62

评论数 0

4.6 搭建深层神经网络块

2018-12-31 10:04:01

阅读数 58

评论数 0

4.5 为什么使用深层表示

2018-12-31 10:03:27

阅读数 47

评论数 0

4.4 核对矩阵的维数

神经网络中常用的debug方法是算一遍矩阵的维数

2018-12-31 10:02:55

阅读数 63

评论数 0

4.3 深层网络中的前向传播

2018-12-31 10:02:24

阅读数 64

评论数 0

4.2 前向和反向传播

2018-12-31 10:01:51

阅读数 29

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭