order by 、sort by、distribute by、group by、cluster by的区别

本文详细解析了Hive SQL中的orderby、sortby、distributeby和clusterby的使用方法及区别。orderby实现全局排序,sortby为局部排序,distributeby控制数据如何分配到reduce任务,clusterby则同时实现数据聚集与排序。
摘要由CSDN通过智能技术生成

转载:https://www.cnblogs.com/huxinga/p/7688376.html
转载:https://blog.csdn.net/SunWuKong_Hadoop/article/details/80691913
1、order by

 hive中的order by 和传统sql中的order by 一样,对数据做全局排序,加上排序,会新启动一个job进行排序,会把所有数据放到同一个reduce中进行处理,不管数据多少,不管文件多少,都启用一个reduce进行处理。如果指定了hive.mapred.mode=strict(默认值是nonstrict),这时就必须指定limit来限制输出条数,原因是:所有的数据都会在同一个reducer端进行,数据量大的情况下可能不能出结果,那么在这样的严格模式下,必须指定输出的条数。

select id,sum(money) from t group by id 这条语句只用一个job就ok,

select id,sum(money) from t group by id order by id 如果加上order by 就会多一个job进行排序操作。

2、sort by

sort  by 是局部排序,会在每个reduce端做排序,每个reduce端是排序的,也就是每个reduce出来的数据是有序的,但是全部不一定有序,除非一个reduce,一般情况下可以先进行局部排序完成后,再进行全局排序,会提高不少效率。

select id,sum(money) from t group by id sort by id; 这条语句也不会增加job,它在reduce端直接进行排序。

3、distribute by

distribute by 是控制map端在reduce上是如何区分的,distribute by  会把指定的值发到同一个reduce中,比如 用上面数据distribute by id 它就会把id相同的值放到一个reduce中执行,不是一个值一个reduce,而是相同的值进入到一个reduce,例如用上面数据可以进入到2个reduce,一般情况下可以sort by 结合使用,先进行分组reduce,再进行排序。

如:select id,money,name from t distribute by id sort by id

4、cluster by

这个其实就是distribute by 和sort by 结合使用的结果。

如:select id,money,name from t cluster by id;

这条语句其实和select id,money,name from t distribute by id sort by id 这条语句的结果是一样的
一、distribute by与group by 的区别

都是按key值划分数据 都使用reduce操作 **唯一不同的是,distribute by只是单纯的分散数据,distribute by col – 按照col列把数据分散到不同的reduce。而group by把相同key的数据聚集到一起,后续必须是聚合操作。

二、order by与sort by 的区别

order by是全局排序 sort by只是确保每个reduce上面输出的数据有序。如果只有一个reduce时,和order by作用一样。

三、cluster by

把有相同值的数据聚集到一起,并排序。 效果等价于distribute by col sort by col, cluster by col <==> distribute by col sort by col

Spark中的sort byorder by是用于对数据进行排序的操作。sort by是将数据放到多个reduce里面进行排序,排序后每一个reduce里面的数据是有序的,但是全部数据不一定有序。如果reduce个数为1,此时全部数据有序,等价于order by操作。当需要对全部数据排序时,可以先使用sort by局部排序(sort by可以设置reduce个数),然后再使用order by排序,将会大大提高效率。\[1\] Spark采用的排序方法是TIMSort,它是归并排序的优化版,并且在小数据量时切换为binarySort来提升效率。无论是TimSort还是binarySort都是排序稳定的,因此不应该出现多次结果不一致的情况。在Spark的代码中,可以追踪到ShuffleInMemorySorter类中的insertRecord方法,该方法用于将记录插入到排序器中。\[2\] 另外,Spark中还有其他与排序相关的操作,如group bydistribute byorder bygroup by将相同的key放到同一个reduce中,但后面必须跟聚合操作;distribute bygroup by的作用类似,都是将key值相同的数据放到同一个reduce中;而order by是全局排序,而sort by是局部排序,当sort by中reduce为1时,等价于order by。\[3\] #### 引用[.reference_title] - *1* *3* [【Hive】sort byorder bydistribute bygroup bycluster by区别](https://blog.csdn.net/Asher117/article/details/108979573)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [避坑:Spark Sql的Order By排序是不稳定的](https://blog.csdn.net/weixin_39445556/article/details/121072103)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值