排序:
默认
按更新时间
按访问量

SDOI2017 Round1 解题报告

Day1A product题意简述定义f(0)=0,f(1)=1,f(n)=f(n−1)+f(n−2)(n≥2)f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n\ge 2) 求∏i=1n∏j=1mf(gcd(i,j))\prod\limits_{i=1}^n\prod\lim...

2017-04-12 07:43:21

阅读数:934

评论数:0

[BZOJ3930][CQOI2015]选数(莫比乌斯反演+杜教筛)

题目描述传送门题解我tm从头到尾竟然都记了一个错误的反演公式… 令f(n)f(n)表示选出gcd为n的有多少种方案 令F(n)F(n)表示选出gcd为n的倍数的有多少种方案 也就是F(n)=∑n|df(d)F(n)=\sum\limits_{n|d}f(d) 那么利用反演公式可以得到f(n...

2017-03-28 11:11:58

阅读数:596

评论数:0

[BZOJ4176]Lucas的数论(莫比乌斯反演+杜教筛)

题目描述传送门题解做约数个数和的时候有一个结论: d(nm)=∑i|n∑j|m[(i,j)=1]d(nm)=\sum\limits_{i|n}\sum\limits_{j|m}[(i,j)=1] 直接套进去 ∑i=1n∑j=1m∑x|i∑y|j[(x,y)=1]\sum\limits_{i=...

2017-03-28 10:59:58

阅读数:1185

评论数:2

[BZOJ3944]Sum(杜教筛)

题目描述传送门题解杜教筛裸题 我不会手写hash表… 讲解移步:http://blog.csdn.net/clove_unique/article/details/66991109代码#include<algorithm> #include<iostream> #inc...

2017-03-28 10:22:03

阅读数:800

评论数:0

莫比乌斯反演 学习笔记

预备知识枚举除法⌊ni⌋\lfloor{n\over i}\rfloor只有O(n√)O(\sqrt n)种取值 并且对于i,⌊n⌊ni⌋⌋\lfloor{n\over \lfloor{n\over i}\rfloor}\rfloor是i被n除并下取整取值相同的一段区间的右端点一个非常有用性质:...

2017-03-27 21:46:17

阅读数:882

评论数:0

[BZOJ2226][Spoj 5971] LCMSum(莫比乌斯反演)

题目描述传送门题解画一波柿子 ∑i=1n[i,j]\sum\limits_{i=1}^n[i,j] =∑i=1nni(i,j)=\sum\limits_{i=1}^n{ni\over (i,j)} =n∑i=1n∑d=1n[(i,n)=d]id=n\sum\limits_{i=1}^n\su...

2017-03-27 18:34:17

阅读数:545

评论数:0

[Codeforces547C]Mike and Foam(莫比乌斯反演+组合数学)

题目描述传送门题解设f(n)f(n)表示gcd为n的数对个数,F(n)F(n)表示gcd为n的倍数的数对个数 那么F(n)=∑n|df(d)F(n)=\sum\limits_{n|d}f(d) 实际上我们要求的就是f(1)f(1) 那么利用反演公式f(n)=∑n|dμ(d)F(dn)f(n)...

2017-03-21 23:02:51

阅读数:695

评论数:0

[Codeforces235E]Number Challenge(莫比乌斯反演)

题目描述 传送门 题解 看到这道题有没有想到sdoi的约数个数和? 没错真的是类似的 首先考虑d(a∗b∗c)d(a*b*c)是多少 有一个结论: d(a∗b∗c)=∑i|a∑j|b∑k|c[(i,j)=1][(j,k)=1][(i,k)=1]d(a*b*c)=\sum\limits...

2017-03-20 22:56:14

阅读数:1040

评论数:0

[BZOJ3529][Sdoi2014]数表(莫比乌斯反演+树状数组)

题目描述传送门题解md刚开始读错题了 本来不是很难的一道题被我搞的看起来不可能做出来?首先看看数表里的数都是啥 实际上位置(i,j)上的数就是f(gcd(i,j))f(gcd(i,j)),其中f(i)f(i)表示i的约数和 那么考虑一下怎么科学地求出来ff 约数和定理: 若n=∏ipki...

2017-03-20 16:53:43

阅读数:316

评论数:0

[BZOJ2394/4659]Lcm(莫比乌斯反演)

题目描述传送门题解刚开始有一个非常傻逼的方法 就是画柿子画成了这个样子 ∑T=1ns(nT,mT)∑p(d)|Tμ(p(d)T)(p(d)T)2p(d)\sum\limits_{T=1}^ns({n\over T},{m\over T})\sum\limits_{p(d)|T}\mu({p(d...

2017-03-20 09:30:29

阅读数:529

评论数:0

[BZOJ2693]jzptab(莫比乌斯反演)

题目描述传送门题解刚开始感觉这题就是道水题啊,又一看模数tm不是质数啊 同样假设n<mn<m ∑i=1n∑j=1m[i,j]\sum\limits_{i=1}^n\sum\limits_{j=1}^m[i,j] =∑i=1n∑j=1mij(i,j)=\sum\limits_{i=...

2017-03-19 20:17:32

阅读数:632

评论数:5

[BZOJ2820]YY的GCD(莫比乌斯反演)

题目描述传送门题解这题和上一题差不多的… 令p(i)p(i)表示第i个质数,假设n<mn<m ∑i=1n∑j=1m∑d=1k[(i,j)=p(d)]\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{d=1}^k[(i,j)=p(d...

2017-03-19 18:16:15

阅读数:637

评论数:0

[BZOJ4407]于神之怒加强版(莫比乌斯反演)

题目描述传送门题解感觉这题非常强 假设n<mn<m ∑i=1n∑j=1m(i,j)k\sum\limits_{i=1}^n\sum\limits_{j=1}^m(i,j)^k =∑i=1n∑j=1m∑d=1n[(i,j)=d]dk=\sum\limits_{i=1}^n\sum\...

2017-03-18 23:37:30

阅读数:594

评论数:0

[BZOJ3994][SDOI2015]约数个数和(莫比乌斯反演)

一个人走路,才是你和风景之间的单独私会。

2016-05-02 17:30:41

阅读数:957

评论数:0

[BZOJ2045]双亲数(莫比乌斯反演)

题目描述传送门题解题目要求∑i=1a∑j=1b[(i,j)=k]\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] 变形∑i=1a∑j=1b[k|i][k|j][(ik,jk)=1]\sum\limits_{i=1}^a\sum\limits_{j=1...

2016-05-02 17:24:56

阅读数:687

评论数:0

[BZOJ2154]Crash的数字表格(莫比乌斯反演)

一半洒落阴凉,一半沐浴阳光。

2016-05-02 17:23:58

阅读数:390

评论数:0

[BZOJ1101][POI2007]Zap(莫比乌斯反演)

一半在图里安详,一半在风里飞扬。

2016-05-02 17:23:07

阅读数:423

评论数:0

[BZOJ2301][HAOI2011]Problem b(莫比乌斯反演)

如果有来生,要做一棵树,站成永恒。

2016-05-02 17:21:39

阅读数:520

评论数:0

[HDU1695]GCD(莫比乌斯反演)

夹起干花做的书签 和你一起骑上扔在角落的自行车 到我们快要忘记的堆满回忆的地方去

2016-04-29 15:48:38

阅读数:747

评论数:2

[BZOJ2005][NOI2010]能量采集(莫比乌斯反演)

罗马的伟大,在于每一个朝代都有格局完整的一流,每一项遗留都有意气昂扬的姿态,每一个姿态都经过艺术巨匠的设计,每一个设计都构成了前后左右的和谐,每一种和谐都使时间和空间安详对视,每一回对视都让其他城市自愧弗如,知趣避过。

2016-04-07 20:50:43

阅读数:1955

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭