zyf2000

"No regrets."

[BZOJ1297][SCOI2009]迷路(拆点+矩阵乘法)

题目描述

传送门

题解

由于矩阵的幂只能处理边权为1的情况,又由于边权最大只到9,可以将一个点拆成9个点,分别表示路径的分段长度。
比如说1->2,5
这里写图片描述
求矩阵的幂即可。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int Mod=2009;
const int max_n=15;
const int max_N=105;
struct hp{int a[max_N][max_N];}unit,A,ans;
char s[max_n];
int squ[max_n][max_n];
int n,t;
inline hp cheng(hp a,hp b)
{
    hp ans;
    memset(ans.a,0,sizeof(ans.a));
    for (int i=1;i<=n*9;++i)
        for (int j=1;j<=n*9;++j)
            for (int k=1;k<=n*9;++k)
                ans.a[i][j]=(ans.a[i][j]+a.a[i][k]*b.a[k][j])%Mod;
    return ans;
}
inline hp matrix_fast_pow(hp a,int p)
{
    hp ans=unit;
    for (;p;p>>=1,a=cheng(a,a))
        if (p&1)
            ans=cheng(ans,a);
    return ans;
}
int main()
{
    scanf("%d%d\n",&n,&t);
    for (int i=1;i<=n*9;++i) unit.a[i][i]=1;
    for (int i=1;i<=n;++i)
    {
        gets(s);
        for (int j=1;j<=n;++j)
            squ[i][j]=s[j-1]-'0';
    }
    for (int i=1;i<=n;++i)
        for (int j=2;j<=8;++j)
            A.a[n+(i-1)*8+j-1][n+(i-1)*8+j]=1;
    for (int i=1;i<=n;++i) A.a[i][n+(i-1)*8+1]=1;
    for (int i=1;i<=n;++i)
        for (int j=1;j<=n;++j)
            if (squ[i][j])
            {
                if (squ[i][j]==1)
                    A.a[i][j]=1;
                else
                    A.a[n+(i-1)*8+squ[i][j]-1][j]=1;
            }
    ans=matrix_fast_pow(A,t);
    printf("%d\n",ans.a[1][n]);
}

总结

这个拆点的思想很厉害呀。要注意以后不同的思想要融会贯通,比如说拆点在网络流里很常用,这里用的也非常巧妙。

阅读更多
版权声明:转载请注明出处:http://blog.csdn.net/clove_unique https://blog.csdn.net/Clove_unique/article/details/51492780
文章标签: BZOJ SCOI 矩阵
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭