python基于蒙塔卡罗算法求e^x在[0,3]上的积分

1.实现过程

首先定义几个变量:

1)up_point(在y=e^x图像之上的点)

2) down_point(在y=e^x图像之下的点)

x(随机生成的x)

y(随机生成的y)

yy(将x代入y=e^x求出的值)

使用python中的random.uniform(),在区间[0,3]内随机生成一个x,在区间[0,22]随机生成一个y。将x代入y=e^x求出yy,比较y和yy的大小,如果y>yy,就将up_point++,否则就把down_point++。

然后我们要做的就是生成足够多的点,利用蒙塔卡罗算法求出该积分的结果。

e^x在[0,3]上的积分:=down_point/(up_point+down_point)*S(S为已知的包含e^x图像的面积)

2.具体实现

import math
import random
x = 0
y = 0
yy = 0
xx = 0
sum = 0
up_point = 0
down_point = 0
for i in range(10000):
    x = random.uniform(0,3)
    y = random.uniform(0,22)
    yy = math.exp(x)
    if y < yy:
        down_point = down_point + 1
    else:
        up_point = up_point + 1
sum = 66*(down_point/(down_point+up_point))
print(sum)

3.运行结果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值