这两天做LeetCode,总是做到“前缀和”相关的题目,发现了新大陆,在此记录一下这个东西。
什么是前缀和?
对一个长度为n的序列nums,将它前i个值求和,得到一个大小为n的pre数组,这个数组记录的就是前缀和。
上面这个定义是我自己写的,显然,这个定义是狭义的。从广义上来讲,将序列的前i个值进行任意的函数操作都可以看做是前缀和。
记上面提到的函数为int f(vector<int>& pre, int i),则pre[i]=f(i)。
对于将前i个值求和的做法,f函数如下所示:
int f(vector<int>& pre, int i){
return pre[i-1]+nums[i];
}
前缀和有什么用?
求一个长度为n的序列的区间[j+1, i]的某一性质时,通过pre[i]-pre[j]可以以O(1)的时间复杂度判断这个区间是否具有这一性质。显然,这里的pre[i]-pre[j]也是狭义的。广义上来讲,凡是以pre[i]和pre[j]为参数,以O(1)时间复杂度得出判断结果的函数都可以。
记上面提到的函数为bool g(vector<int>& pre, int j, int i)。
比如,要求区间[i+1, j]间所有元素的和为k,则g函数如下所示:
bool g(vector<int>& pre, int j, int i){
return pre[i]-pre[j] == k;
}
什么时候用前缀和?
当需要大量判断某些区间的某一性质时使用。比如找出数组nums中满足某一性质的区间的个数,比如找出数组中最长的满足某一性质的区间,这些区间有O(
)个,这时就要想到用前缀和。
哈希表优化
优化条件:能找到 i 和 j 相关的恒等式pre[j]=h(i)。比如上述的pre[i]-pre[j] == k对应的恒等式为pre[j]=h(i)=pre[i]-k。只有这个等式成立才说明区间[j+1, i]的某一性质。
优化方法:计算pre[j]并放入哈希表,在计算pre[i]后利用恒等式计算h(i),然后将h(i)和哈希表中数据比对,如果哈希表中有则说明区间[j+1, i]的某一性质。
优化结果:将时间复杂度降低O(n)
题目举例
LeetCode 560题:https://leetcode-cn.com/problems/subarray-sum-equals-k/
题目:给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。
代码:
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
unordered_map<int, int> mp;
mp[0] = 1;
int count = 0, pre = 0;
for (auto& x:nums) {
pre += x;
if (mp.find(pre - k) != mp.end()) count += mp[pre - k];
mp[pre]++;
}
return count;
}
};
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/subarray-sum-equals-k/solution/he-wei-kde-zi-shu-zu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
pre[i]记录前缀数组的和。pre[i]计算公式为pre[i]=pre[i−1]+nums[i]。
恒等式为pre[j]==pre[i]−k。
mp[data]记录的是前缀和为data的前缀个数。
需要注意的是,从左往右边更新边计算的时候已经保证了mp[pre[i]−k] 里记录的 pre[j] 的下标范围是 0≤j≤i 。同时,由于pre[i] 的计算只与前一项的答案有关,因此我们可以不用建立 pre 数组,直接用 pre 变量来记录 pre[i−1] 的答案即可。
LeetCode 1248题:https://leetcode-cn.com/problems/count-number-of-nice-subarrays/
题目:
给你一个整数数组 nums 和一个整数 k。
如果某个 连续 子数组中恰好有 k 个奇数数字,我们就认为这个子数组是「优美子数组」。
请返回这个数组中「优美子数组」的数目。
代码:
class Solution {
vector<int> cnt;
public:
int numberOfSubarrays(vector<int>& nums, int k) {
int n = (int)nums.size();
cnt.resize(n + 1, 0);
int odd = 0, ans = 0;
cnt[0] = 1;
for (int i = 0; i < n; ++i) {
odd += nums[i] & 1;
ans += odd >= k ? cnt[odd - k] : 0;
cnt[odd] += 1;
}
return ans;
}
};
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/count-number-of-nice-subarrays/solution/tong-ji-you-mei-zi-shu-zu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
pre[i]记录前缀数组的奇数的个数。pre[i]计算公式为pre[i]=pre[i−1]+(nums[i]&1)。
恒等式为pre[j]==pre[i]−k。
代码中的cnt数组取代了哈希表,效果一样。cnt[data]记录前缀数组中奇数个数为data的前缀个数。
需要注意的是,从左往右边更新边计算的时候已经保证了cnt[pre[i]−k] 里记录的pre[j] 的下标范围是 0≤j≤i 。同时,由于pre[i] 的计算只与前一项的答案有关,因此我们可以不用建立pre 数组,直接用odd 变量来记录 pre[i−1] 的答案即可。
LeetCode 1248题:https://leetcode-cn.com/problems/find-the-longest-substring-containing-vowels-in-even-counts/
题目:
给你一个字符串 s ,请你返回满足以下条件的最长子字符串的长度:每个元音字母,即 'a','e','i','o','u' ,在子字符串中都恰好出现了偶数次。
代码:
class Solution {
public:
int findTheLongestSubstring(string s) {
int ans = 0, status = 0, n = s.length();
vector<int> pos(1 << 5, -1);
pos[0] = 0; //记录第一个状态为0的前缀位置,初始时状态确实为0。
for (int i = 0; i < n; ++i) {
if (s[i] == 'a') {
status ^= 1<<0;
} else if (s[i] == 'e') {
status ^= 1<<1;
} else if (s[i] == 'i') {
status ^= 1<<2;
} else if (s[i] == 'o') {
status ^= 1<<3;
} else if (s[i] == 'u') {
status ^= 1<<4;
}
if (~pos[status]) { //该状态已经被记录过
ans = max(ans, i + 1 - pos[status]); //新位置减去最早的位置。
} else { //该状态未被记录过
pos[status] = i + 1; //记录第一个状态为status的前缀位置。i+1是因为第0个位置被初始状态占了,所以后面的位置都得往后一个。
}
}
return ans;
}
};
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/find-the-longest-substring-containing-vowels-in-even-counts/solution/mei-ge-yuan-yin-bao-han-ou-shu-ci-de-zui-chang-z-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
pre[i][k] 表示在字符串前 i 个字符中,第 k 个元音字母一共出现的奇偶性。pre[i][k]的计算公式为pre[i][k]=pre[i-1][k]+is_kth_vowel(s[i])。
接着将pre[i][k]压缩到一个5位的二进制数中,表示前i个字符中个元音字母的奇偶性,记为pre[i]。同前面题目的道理,由于pre[i] 的计算只与前一项的答案有关,因此我们可以不用建立pre 数组,直接用status 变量来记录 pre[i−1] 的答案即可。
恒等式为pre[j]==pre[i]。
代码中pos数组取代了哈希表,效果一样。pos[data]记录了前缀数组中最早一个元音字母奇偶性为data的前缀位置。
PS:暂时就碰到三道用前缀和与哈希表做的题目,啃懂这三道,其他题目应该也差不多了吧。

8861

被折叠的 条评论
为什么被折叠?



