Backup And Recovery User's Guide-RMAN TSPITR模型

本文详细介绍了RMAN的表空间时间点恢复(TSPITR)模型及其不同操作模式,包括完全自动化模式、自动化模式下用户设置的RMAN管理辅助实例以及非自动化模式下的用户管理辅助实例。
RMAN TSPITR模型

使用RECOVER TABLESPACE命令来启动RMAN TSPITR

RMAN TSPITR有很多选项。

操作的不同模式之间的区别是在你的环境中你需要多少自动化和多少自定义。

n  完全自动化RMAN管理整个TSPITR过程包括辅助实例。

你指定恢复集表空间、辅助目的地、目标时间,并允许RMAN管理TSPITR的其它方面。

建议采用默认模式,除非对TSPITR之后恢复集文件的位置、TSPITR过程中的辅助集文件、通道设置和参数、

辅助实例的其它方面需要进行更多的控制。

n  自动化的,使用用户设置的RMAN管理的辅助实例。

可以使用RMAN TSPITR的一些默认设置,却仍然使用RMAN管理的辅助实例和目的地。

默认模式的这种变化允许你内建的RMAN TSPITR提供的管理获得好处,同时也可以指定:

u  辅助集的位置和恢复集文件

u  初始化参数

n  非自动化TSPITR和用户管理的辅助实例。

这种模式需要你建立和管理辅助实例的所有方面和TSPITR过程的某些方面。

当你必须为用户管理的实例分配不同数量的通道,改变通道参数的时候,适合这个模式。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/17013648/viewspace-1097448/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/17013648/viewspace-1097448/

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值