信息熵
信息熵
表示 随机变量 的 不确定性
。
不确定性
越大(即所谓的信息量越大),信息熵
越大。
信息可不可以量化?
首先从直觉上来讲,是可以的。不然我们怎么觉得有的人废话特别多,却没什么信息量;而有的人一语中的,一句话就传达了很大的信息量。
为什么有的信息大,有的信息小?
有些事情本来不是很确定:例如 明天股票是涨是跌;
1)“明天NBA决赛开始了“,和“股票跌涨“没关系,所以“明天NBA决赛开始了“对“股票跌涨“带来的信息量很小。
2)但是 “明天NBA决赛开始了“,“大家都不关注股票了,没人坐庄有99%的股都会下跌“,这句话对“对票跌涨“带来的信息量很大。因为它使本来不确定的事情变得十分确定。而有些事情本来就很确定:例如每天太阳从东方升起;
你再告诉我一百遍,这句话还是没有信息量的。
因为这件事情不能更确定了所以说信息量的大小跟事情的不确定性有关。
那么,不确定性的变化跟什么有关呢?
1. 跟事情的可能结果的数量有关
例如我们讨论太阳从哪升起。本来就只有一个结果,我们早就知道,那么无论谁传递任何信息都是没有信息量的。
当可能结果数量比较大时,我们得到的新信息才有潜力拥有大信息量。
2. 跟概率有关。
单看可能结果数量不够,还要看初始的概率分布。例如一开始我就知道小明在电影院的有15*15个座位的A厅看电影。小明可以坐的位置有225个,可能结果数量算多了。可是假如我们一开始就知道小明坐在第一排的最左边的可能是99%,坐其它位置的可能性微乎其微,那么在大多数情况下,你再告诉我小明的什么信息也没有多大用,因为我们几乎确定小明坐第一排的最左边了。
那么,怎么衡量不确定性的变化的大小呢?怎么定义呢?
这个问题不好回答,但是假设我们已经知道这个量已经存在了,不妨就叫做信息量
那么你觉得信息量起码该满足些什么特点呢?
一,起码 不是个负数 吧
不然说句话还偷走信息呢~
二,起码 信息量 和 信息量 之间可以 相加 吧!
假如你告诉我的第一句话的信息量是3,在第一句话的基础上又告诉我一句话,额外信息量是4,那么两句话信息量加起来应该等于7吧!难道还能是5是9?
三,信息量是连续依赖于概率
刚刚已经提过,信息量跟概率有关系,但我们应该会觉得,信息量是连续依赖于概率的吧!
就是说,某一个概率变化了0.0000001,那么这个信息量不应该变化很大。
四,新信息有更大的潜力具有更大的信息量
刚刚也提过,信息量大小跟可能结果数量有关。假如每一个可能的结果出现的概率一样,那么对于可能结果数量多的那个事件,新信息有更大的潜力具有更大的信息量,因为初始状态下不确定性更大。
那有什么函数能满足上面四个条件呢?
负的对数函数,也就是-log(x)!
底数取大于1的数保证这个函数是非负的就行。前面再随便乘个正常数也行。
a. 为什么不是正的?因为假如是正的,由于x是小于等于1的数,log(x)就小于等于0了。第一个特点满足。
b. 咱们再来验证一下其他特点。三是最容易的。假如x是一个概率,那么log(x)是连续依赖于x的。done
c。四呢?假如有n个可能结果,那么出现任意一个的概率是1/n,而-log(1/n)是n的增函数,没问题。
d。最后验证二。由于-log(xy) = -log(x) -log(y),所以也是对的。学数学的同学注意,这里的y可以是给定x的条件概率,当然也可以独立于x。
By the way,这个函数是唯一的(除了还可以多乘上任意一个常数),有时间可以自己证明一下,或者查书。
ok,所以我们知道一个事件的信息量就是这个事件发生的概率的负对数。
最后终于能回到信息熵。信息熵是跟所有可能性有关系的。每个可能事件的发生都有个概率。信息熵就是平均而言发生一个事件我们得到的信息量大小。所以数学上,信息熵其实是信息量的期望。(表达式参考其它答案或者看下面)
至于为什么用“熵”这个怪字?大概是当时翻译的人觉得这个量跟热力学的熵有关系,所以就用了这个字,君不见字里头的火字旁?
而热力学为什么用这个字?这个真心不知道。。。
信息增益
熵:表示随机变量的不确定性。
条件熵:在一个条件下,随机变量的不确定性。
信息增益:熵 - 条件熵
在一个条件下,信息不确定性减少的程度!
通俗地讲,X(明天下雨)是一个随机变量,X的熵可以算出来, Y(明天阴天)也是随机变量,在阴天情况下下雨的信息熵我们如果也知道的话(此处需要知道其联合概率分布或是通过数据估计)即是条件熵。
两者相减就是信息增益!原来明天下雨例如信息熵是2,条件熵是0.01(因为如果是阴天就下雨的概率很大,信息就少了),这样相减后为1.99,在获得阴天这个信息后,下雨信息不确定性减少了1.99!是很多的!所以信息增益大!也就是说,阴天这个信息对下雨来说是很重要的!
所以在特征选择的时候常常用信息增益,如果IG(信息增益大)的话那么这个特征对于分类来说很关键~~ 决策树就是这样来找特征的!
参考
感谢知乎的朋友[滴水]、[Kay Zhou]
参考链接
https://www.zhihu.com/question/22178202/answer/49929786
https://www.zhihu.com/question/22104055