github开源项目
flink-note的笔记。本博客的实现代码都写在项目的flink-state/src/main/java/state/keyed/KeyedStateDemo.java文件中。
项目github地址: github
1. flink键控状态
flink键控状态是作用与flink KeyedStream上的,也就是说需要将DataStream先进行keyby之后才能使用。键控状态会为每个key维护一份状态。flink支持五种键控状态,分别是:
- ValueState: 维护一个值的状态,比方说我们要统计每个用户的购买次数,那么就先将流按照用户id进行keyby,然后维护一个类型为Integer的ValueState。 这个值可以被update(T)更新,使用T value()进行获取。
- ListState :维护一个list的状态,可以使用 add(T) 、 addAll(List)、update(List)来更新列表状态中的值,使用Iterable get()来获取list中的值。
- ReducingState 与ListState类似,只是将所有值都reduce出一个结果。
- AggregatingState<
本文深入探讨了Flink中的键控状态,包括ValueState、ListState、ReducingState、AggregatingState和MapState五种类型,并通过实例展示了如何在KeyedStream上使用这些状态来统计用户购买次数和记录最近三次登录时间。同时提供了项目的GitHub链接供参考。
订阅专栏 解锁全文
379

被折叠的 条评论
为什么被折叠?



