jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结。
安装jieba
pip install jieba
简单用法
结巴分词分为三种模式:精确模式(默认)、全模式和搜索引擎模式,下面对这三种模式分别举例介绍:
精确模式
import jieba
s = u'我想和女朋友一起去北京故宫博物院参观和闲逛。'
cut = jieba.cut(s)
print '【Output】'
print cut
print ','.join(cut)
【Output】
<generator object cut at 0x7f8dbc0efc30>
我,想,和,女朋友,一起,去,北京故宫博物院,参观,和,闲逛,。
可见分词结果返回的是一个生成器(这对大数据量数据的分词尤为重要)。
全模式
print '【Output】'
print ','.join(jieba.cut(s,cut_all = True))
【Output】
我,想,和,女朋友,朋友,一起,去,北京,北京故宫,北京故宫博物院,故宫,故宫博物院,博物,博物院,参观,和,闲逛,,
可见全模式就是把文本分成尽可能多的词。
搜索引擎模式
print '【Output】'
print ','.join(jieba.cut_for_search(s))
【Output】
我,想,和,朋友,女朋友,一起,去,北京,故宫,博物,博物院,北京故宫博物院,参观,和,闲逛,。
获取词性
每个词都有其词性,比如名词、动词、代词等,结巴分词的结果也可以带上每个词的词性,要用到jieba.posseg,举例如下:
import jieba.posseg as psg
print '【Output】'
print [(x.word,x.flag) for x in psg.cut(s)]
# 输出:
'''
[(u'我', u'r'), (u'想', u'v'), (u'和', u'c'), (u'女朋友', u'n'), (u'一起', u'm'),
(u'去', u'v'), (u'北京故宫博物院', u'ns'), (u'参观', u'n'), (u'和', u'c'), (u'闲逛', u'v'), (u'。', u'x')]
'''
可以看到成功获取到每个词的词性,这对于我们对分词结果做进一步处理很有帮助,比如只想获取分词结果列表中的名词,那么就可以这样过滤:
print [(x.word,x.flag) for x in psg.cut(s) if x.flag.startswith('n')]
# 输出:
'''
[(u'女朋友', u'n'), (u'北京故宫博物院', u'ns'), (u'参观', u'n')]
'''
至于词性的每个字母分别表示什么词性,jieba分词的结果可能有哪些词性,就要去查阅词性对照表了,本文结尾附了一份从网上搜到的词性对照表,想了解更详细的词性分类信息,可以到网上搜索"结巴分词词性对照"。
并行分词
在文本数据量非常大的时候,为了提高分词效率,开启并行分词就很有必要了。jieba支持并行分词,基于python自带的multiprocessing模块,但要注意的是在Windows环境下不支持。
用法:
# 开启并行分词模式,参数为并发执行的进程数
jieba.enable_parallel(5)
# 关闭并行分词模式
jieba.disable_parallel()
举例:开启并行分词模式对三体全集文本进行分词
santi_text = open('./santi.txt').read()
print len(santi_text)
2681968
可以看到三体全集的数据量还是非常大的,有260多万字节的长度。
jieba.enable_parallel(100)
santi_words = [x for x in jieba.cut(santi_text) if len(x) >= 2]
jieba.disable_parallel()
获取出现频率Top n的词
还是以上面的三体全集文本为例,假如想要获取分词结果中出现频率前20的词列表,可以这样获取:
from collections import Counter
c = Counter(santi_words).most_common(20)
print c
# 输出:
'''
[(u'\r\n', 21805), (u'一个', 3057), (u'没有', 2128), (u'他们', 1690), (u'我们', 1550),
(u'这个', 1357), (u'自己', 1347), (u'程心', 1320), (u'现在', 1273), (u'已经', 1259),
(u'世界', 1243), (u'罗辑', 1189), (u'可能', 1177), (u'什么', 1176), (u'看到', 1114),
(u'知道', 1094), (u'地球', 951), (u'人类', 935), (u'太空', 930), (u'三体', 883)]
'''
可以看到结果中'\r\n'居然是出现频率最高的词,还有'一个'、'没有'、'这个'等这种我们并不想要的无实际意义的词,那么就可以根据前面说的词性来进行过滤,这个以后细讲。
使用用户字典提高分词准确性
不使用用户字典的分词结果:
txt = u'欧阳建国是创新办主任也是欢聚时代公司云计算方面的专家'
print ','.join(jieba.cut(txt))
欧阳,建国,是,创新,办,主任,也,是,欢聚,时代,公司,云,计算,方面,的,专家
使用用户字典的分词结果:
jieba.load_userdict('user_dict.txt')
print ','.join(jieba.cut(txt))
欧阳建国,是,创新办,主任,也,是,欢聚时代,公司,云计算,方面,的,专家
可以看出使用用户字典后分词准确性大大提高。
注:其中user_dict.txt的内容如下:
欧阳建国 5
创新办 5 i
欢聚时代 5
云计算 5
用户字典每行一个词,格式为:
词语 词频 词性
其中词频是一个数字,词性为自定义的词性,要注意的是词频数字和空格都要是半角的。