HDU 4833 Best Financing 一脸费用流的dp

本文针对一笔或多笔资金在多种理财产品中进行投资的问题,提出了一种基于动态规划的算法来求解最大收益。通过将资金按时间划分并考虑每个时间点可用的理财产品,实现了对每笔资金最大收益的有效计算。

原题:http://acm.hdu.edu.cn/showproblem.php?pid=4833

题意:中文题不解释...


解题思路:

首先以interest_rates为费用建图跑费用流是比较容易想到的,于是比赛中我T了10几发...

那么我们考虑另外一种思路,把本金分成1块钱1块钱来考虑。

对于在时间d得到的钱,他只能在d时间之后的理财进行投资,收回之后再在更后面进行投资,最终带来的总收益等于 投资的理财的interest_rates之和 / 100

所以我们可以设 dp[i] 表示从时间i开始,对从时间 i 之后开始的理财进行投资,可以获得的最大收益系数和,首先如果我们无视从 i 时刻开始的理财,dp[i] 就等于 dp[i+1]

否则如果有一个从时间 i 开始,到时间 j 结束的理财 x,对其投资后,dp[i] = dp[j] + interest_rates[x],所以我们可以枚举从时刻 i 开始的理财,对dp[i] 进行优化

得到dp[]之后,对于在时刻 i 获得的本金,其总收益就是 本金 * dp[i] / 100


代码:

<span style="font-family:Courier New;">#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
using namespace std;

#define LL long long
#define MP make_pair
#define eps 1e-8
#define mod 1000000007

#define mxn 2505

int d[mxn], e[mxn], s[mxn], t[mxn], k[mxn];
LL dp[100005], val[100005];
vector<int> nxt[100005], K[100005];

int main()
{
    int T, n, m, cas = 0;
    scanf( "%d", &T );
    while( T-- ) {
        scanf( "%d%d", &n, &m );
        memset(val, 0, sizeof(val));
        for( int i = 0; i < n; ++i ) {
            scanf( "%d%d", d + i, e + i );
            val[d[i]] += e[i];
        }
        for( int i = 0; i <= 100000; ++i ) nxt[i].clear(), K[i].clear();
        for( int i = 0; i < m; ++i ) {
            scanf( "%d%d%d", s + i, t + i, k + i );
            nxt[s[i]].push_back(t[i]);
            K[s[i]].push_back(k[i]);
        }
        dp[100001] = 0;
        double ans = 0;
        for( int i = 100000; i >= 1; --i ) {
            dp[i] = dp[i+1];
            for( int j = 0; j < nxt[i].size(); ++j )
                dp[i] = max(dp[i], dp[nxt[i][j]] + K[i][j]);
            ans += dp[i] * val[i];
        }
        printf( "Case #%d:\n%.2lf\n", ++cas, ans / 100.0 );
    }
    return 0;
}</span>

m个理财用于更新都只有一次,所以复杂度并不高

一个可以优化的地方是,由于理财只有2500个,所以能够用于更新的点其实最多也就5000个,可以离散化一下,这样 dp[i] 乘的系数不再是val[i],而是相邻两个离散点之间的val[]和,用前缀和处理一下就好了,可以快几百ms



三维建模技术借助先进的图像处理手段,将二维影像转化为立体空间数据。在多种实现路径中,双摄像头视觉方案与编码光投影技术具有代表性。前者通过布置两个成像单元从不同方位采集画面,依据视差原理与空间几何关系推算深度数据;后者则向目标表面投射特定光栅,通过解析光栅形变反推三维轮廓。相位偏移法作为光栅技术的重要分支,采用多步渐进式光场调制策略,通过记录连续相位变化获取亚像素级三维信息。同步采用的互补二进制编码机制,通过优化光强分布模式有效解决相位跳变问题,显著提升重建数据的连续性。 成像系统的参数标定是三维数据生成的基础环节,需通过专用算法确定镜头焦距、像主点坐标及光学畸变系数等核心参数。立体校正则依据双相机空间几何关系,对采集图像进行投影变换,使对应像点分布于同一水平扫描线上,大幅降低立体匹配复杂度。在光栅系统中,相位对齐技术通过建立像素级相位映射关系,将二维相位场转换为三维坐标;而在立体视觉中,视差分析通过比对双视图对应像素偏移量,构建深度映射矩阵。最终通过点云融合算法,将离散空间坐标整合为连续曲面模型,该技术体系在工业检测、数字娱乐及沉浸式交互等领域具有重要应用价值。 资源来源于网络分享,仅用于学习交使用,请勿用于商业,如有侵权请联系我删除!
内容概要:本文围绕“风光制氢合成氨系统优化研究”展开,重点介绍了基于Matlab代码实现的并网与离网模式下风能、光能耦合制氢进而合成氨的系统容量配置与调度优化方法。研究涵盖可再生能源波动性、系统能量转换效率、设备容量规划及运行调度策略等关键问题,通过数学建模与优化算法(如智能优化、模型预测控制等)实现系统经济性与稳定性的平衡。文中多次提及“复现”字样,表明部分内容旨在还原已有研究成果,并提供完整的代码资源支持仿真验证。同时,文档列举了大量相关研究主题,形成一个涵盖电力系统、综合能源、状态估计、机器学习等多个方向的技术资源集合。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及工程技术人员,熟悉Matlab/Simulink环境者更佳;适合从事新能风光制氢合成氨系统优化研究(Matlab代码实现)源系统建模与优化研究的专业人士。; 使用场景及目标:①开展风光耦合制氢及合成氨系统的容量规划与运行调度研究;②复现已发表论文中的优化模型与算法;③构建综合能源系统仿真平台,提升科研效率与代码实践能力。; 其他说明:文档附带百度网盘链接,提供YALMIP工具包及其他完整资源下载,便于读者直接调用求解器进行优化计算,建议结合实际需求选择相应案例进行学习与拓展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值