Java服务,内存OOM了,如何快速定位

某Java服务(假设PID=10765)出现了OOM,如何快速定位?

Java服务出现OOM,最常见的原因是:

(1)内存确实分配过小,内存确实不够用
(2)某一个对象被频繁申请,却没有释放,内存不断泄漏,导致内存耗尽
(3)某一个资源被频繁申请,系统资源耗尽,例如:不断创建线程,不断发起网络连接

更具体的,可以按照以下步骤,使用以下工具排查
一、确认是不是内存本身就分配过小
在这里插入图片描述
如上图,可以查看新生代,老生代堆内存的分配大小以及使用情况,看是否本身分配过小。
二、找到最耗内存的对象
方法:jmap -histo:live 10765 | more
在这里插入图片描述
如上图,输入命令后,会以表格的形式显示存活对象的信息,并按照所占内存大小排序:
(1)实例数;
(2)所占内存大小;
(3)类名;
是不是很直观?对于实例数较多,占用内存大小较多的实例/类,相关的代码就要针对性review了。
需要说明的是,jmap -histo:live会执行一次FGC,如果仍无法定位,可dump内存,通过Java内存分析工具MAT(Memory Analyzer Tool)线下进行分析。

上图中占内存最多的对象是RingBufferLogEvent,共占用内存18M,属于正常使用范围。
如果发现某类对象占用内存很大(例如几个G),很可能是类对象创建太多,且一直未释放。例如:
(1)申请完资源后,未调用close()或dispose()释放资源;
(2)消费者消费速度慢(或停止消费了),而生产者不断往队列中投递任务,导致队列中任务累积过多;

三、确认是否是资源耗尽
工具:
(1)pstree
(2)netstat
查看进程创建的线程数,以及网络连接数,如果资源耗尽,也可能出现OOM。

这里介绍另一种方法,通过
(1)/proc/PID/fd2/proc/{PID}/fd (2)/proc/{PID}/task
可以分别查看句柄详情和线程数。

例如,某一台线上服务器的sshd进程PID是9339,执行:
ll /proc/9339/fd
ll /proc/9339/task
在这里插入图片描述

如上图,sshd共占用了四个句柄
(1)0 -> 标准输入;
(2)1 -> 标准输出;
(3)2 -> 标准错误输出;
(4)3 -> socket(容易想到是监听端口);

sshd只有一个主线程PID为9339,并没有多线程。

所以,只要
ll /proc/PID/fdwclll/proc/{PID}/fd | wc -l ll /proc/{PID}/task | wc -l (效果等同pstree -p | wc -l)
就能知道进程打开的句柄数和线程数。

来源:https://mp.weixin.qq.com/s/bClGUG32QQmdgtnpyo431Q

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 游动-白 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值