892.三锥形体的表面积
思路:
考虑到每一个立方体能够贡献的表面积和六个面是否有相邻的立方体有关;
第一个思路是遍历每一个立方体,再判断该立方体的四周及上下面是否存在相邻的立方体,每个面不存在就表面积加1
这样的思路实现后的时间复杂度就上去了,相当于时间复杂度是kn^2(k为总的立方体个数,n为格子数),因此耗时13ms;
参考了优秀的题解,有了优化方向;
- 考虑不遍历每个格子的所有立方体;
- 计算每个格子叠放的立方体贡献的表面积
- 每一个格子的所有叠放的立方体共同贡献了上下两个面的表面积
- 每个立方体会贡献的四个侧面的表面积和相邻的立方体有关,则每个格子上叠加的立方体组成的长方体每个侧面贡献的表面积为该侧面高度减去相邻格子高度的差,再与0取最大值,就是该面贡献的表面积
再优化就考虑先计算:
每个柱体是由:2个底面(上表面/下表面)+ 所有的正方体都贡献了4个侧表面积
再减去:两个柱体贴合的表面积(两个柱体高的最小值*2)。
class Solution {
public int surfaceArea(int[][] grid) {
int N = grid[0].length;
int sum = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (grid[i][j] > 0) {
sum += 2;
//左
if (i == 0) {
sum += grid[i][j];
} else {
sum += Math.max(0, grid[i][j] - grid[i - 1][j]);
}
//右
if (i == N - 1) {
sum += grid[i][j];
} else {
sum += Math.max(0, grid[i][j] - grid[i + 1][j]);
}
//前
if (j == 0) {
sum += grid[i][j];
} else {
sum += Math.max(0, grid[i][j] - grid[i][j - 1]);
}
//后
if (j == N - 1) {
sum += grid[i][j];
} else {
sum += Math.max(0, grid[i][j] - grid[i][j + 1]);
}
}
}
}
return sum;
}
}
class Solution {
public int surfaceArea(int[][] grid) {
int n = grid.length;
int sum = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int k = grid[i][j];
if (k > 0) {
sum += 2;
sum += k * 4;
sum -= i > 0 ? Math.min(grid[i][j], grid[i - 1][j]) * 2 : 0;
sum -= j > 0 ? Math.min(grid[i][j], grid[i][j - 1]) * 2 : 0;
}
}
}
return sum;
}
}