redis 字典的实现

最近研究了一下redis里面字典的实现,redis作为高效的内存存储而被广泛使用,内部实现的db结构以及多种高效的数据结构,其底层基本上就是靠字典来实现。而其字典数据结构是基于哈希表来实现的,其中一些特性的实现十分精妙。

1.数据结构

节点数据结构

因为是基于开链法的哈希表实现,所以需要维护了一个next节点

typedef struct dictEntry {
    void *key;
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next;
} dictEntry;

哈希表数据结构

其中size是当前哈希表的大小,used是当前使用的大小,size会根据当前used的大小来做相应的调整,调整的过程就是字典动态扩容的过程,具体过程下面会描述。sizemask=size-1,是用来做掩码的,哈希算法算出的index,通过index&sizemask操作来代替除留余数,这么做的原因是&操作比%更快。

typedef struct dictht {
    dictEntry **table;
    unsigned long size;
    unsigned long sizemask;
    unsigned long used;
} dictht;

字典数据结构

type是函数指针类型,封装了哈希函数,key比较函数,释放内存函数等等。一个高效的哈希函数能保证哈希的结果尽量均匀分布,redis中的字符串哈希算法便是著名的开源算法MurmurHash2,但是因为上层的有不同的数据结构,所以实现了不同的哈希函数。字典中维护两张哈希表,主要是用来做动态rehash的,rehashidx便是两张表动态rehash的索引。iterators是当前迭代器的个数,具体后面会详细介绍。

typedef struct dict {
    dictType *type;
    void *privdata;
    dictht ht[2];
    long rehashidx; /* rehashing not in progress if rehashidx == -1 */
    int iterators; /* number of iterators currently running */
} dict;

字典定义整体的结构图如下:

2.特性介绍

redis的字典实现了很多特别的东西,花式造轮子的根本原因还是从时间与空间上做考量。

动态扩容/缩容

redis的数据都是放在第一张哈希表中ht[0]中的,所谓的动态扩容就是说ht[0]那张哈希表快不够用的时候,目前是used/size > 5的时候,使用ht[1]来扩大哈希表的容量。这其中有两种方式,一种是redis提供了显示的扩容的接口dictExpand,供外部调用,另外一种是在添加数据的时候调用_dictExpandIfNeeded,以此来判断是否需要扩容。缩容就是当前哈希表使用率 used/size 低于某个值时,目前这个值是10%,利用ht[1]缩小哈希表的容量。扩容和缩容的操作就是rehash的过程。

rehash+渐进式

rehash就是将第一张ht[0]的数据迁移到ht[1]的过程,rehash实现了两种策略,一种是在定时器的每个tick里面,执行databasesCron操作的时候,还有一种是在增加查找删除等字典操作的时候执行,这样的过程可以保证rehash的时候不会阻塞redis服务器,对用户来说,也是无感知的。rehash的过程中维护了一个索引,就是上面介绍的字典结构中的rehashidx,使用这个索引遍历ht[0],将数据无缝迁移到ht[1]。因为在rehash中的任何时刻,一个节点只能存在其中一张哈希表中,所以每次操作都需要处理两张表。

迭代器

redis里面的字典实现了两种迭代器,一种是安全的迭代器,一种是普通的迭代器。所谓安全就是指在迭代的过程中可以执行添加查找等操作,非安全的迭代器就是只能执行迭代操作。其实本质上就是安全的迭代器会给dict设置iterators++(dict里面的变量),这样字典的各种操作就不会执行rehash操作,如果在迭代的过程中执行了rehash,迭代索引就会错乱。

3.接口介绍

dict *dictCreate(dictType *type, void *privDataPtr);

创建字典,目前redis中用到字典的地方有很多,包括全量的key,超时的key等等db中的kv, 命令回调表,hash结构,set结构,sortset结构等等。

int dictAdd(dict *d, void *key, void *val);

添加数据,前面说到会执行rehash操作,并且如果字典底层正在rehash,索引的计算会读取两张表来判断,并且数据只会添加到第二张表里面。

dictEntry *dictFind(dict *d, const void *key)

查找数据,和添加数据很类似,唯一的区别是查找数据的时候不会计算是否需要扩容。

int dictDelete(dict *d, const void *key);

删除数据,和添加数据的过程类似,但是在删除数据的过程中不做缩容操作,缩容是上层负责主动调用缩容接口htNeedsResize和dictResize。

dictEntry *dictNext(dictIterator *iter)

迭代字典,搭配dictGetIterator或者dictGetSafeIterator操作,前面有说到安全迭代器和非安全迭代器的区别,非安全的迭代器在初次迭代的时候会计算一个哈希值,释放迭代器的时候assert这个哈希值是否被改变了。

总结

redis字典的实现有很多有趣的特性,包括动态扩容缩容,渐进式rehash等,所有这些特性的出发点都是基于充分使用内存的角度去考虑。

Redis API文档。Redis(全称:Remote Dictionary Server 远程字典服务)是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。Redis 是一个高性能的key-value数据库。 redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。Redis支持主从同步。数据可以从主服务器向任意数量的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。这使得Redis可执行单层树复制。存盘可以有意无意的对数据进行写操作。由于完全实现了发布/订阅机制,使得从数据库在任何地方同步树时,可订阅一个频道并接收主服务器完整的消息发布记录。同步对读取操作的可扩展性和数据冗余很有帮助。redis的官网地址,非常好记,是redis.io。(域名后缀io属于国家域名,是british Indian Ocean territory,即英属印度洋领地)目前,Vmware在资助着redis项目的开发和维护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值