HIbernate中对象的三种状态和session的几个易混淆的方法的区别

首先理解实体对象的三种状态:

(判断条件就是是否被session管理,数据库里有无记录)
瞬时对象:new出来了,没被session管理的,数据库里没有记录的;
持久对象:对象有实例,session也管理者,数据库里也有记录的。
脱管对象:就是脱离session管理的对象,数据库里有记录。
这三个对象状态,实际可以认为是一个未被hibernate处理,正在被其处理,处理之后的三个阶段起的名字而已。

(下面的图片会更好的让你理解)

 

save ,persist 方法:
都是保存数据,区别是:在没开启事务时,persist方法不向数据库插入数据,不会产生insert语句;save方法在没有开启事务时,会向数据库插入数据,但会回滚,所以数据库里没有数据。
load ,get 方法(根据id查):
load方法就是通常说的懒加载,返回的是代理,不立即访问数据库。不过永远不会返回空!get方法会立即访问数据库。
lock 方法:
把对象变成持久对象,但不会同步对象状态。就是把对象查出来,加一把锁不让别人修改。

(如有错误和疑问请拍砖提醒)

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性稳定性。此外,文档还列举了大量相关的科研方向技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值