利用人工智能进行灾害管理
自然灾害常常让受灾民众感到无助,救援人员在应对灾害时也面临诸多挑战。本文提出了一种综合解决方案,结合社交媒体分析和空中人员检测技术,以提高灾害管理的效率和效果。
背景与问题提出
过去十年,自然灾害频发,尽管科技不断进步,但救援行动往往滞后。以2018年喀拉拉邦洪水为例,大量人员被困,救援人员众多,却缺乏有效的连接方式。因此,需要一个能实时监测受灾地区的系统,解决求救与响应的问题。
问题主要分为两类:一是受灾人员无法与外界沟通;二是受灾人员通过社交媒体求救。对于前者,采用无人机、边缘计算设备、有效目标检测模型(RetinaNet)和通信网络组成的硬件和软件管道来解决,本文主要聚焦于目标检测部分。
在选择目标检测模型时,有单阶段和两阶段检测器两类。常见的模型如YOLO和SSD,与所选的RetinaNet相比,YOLO和SSD在处理前景和背景数据样本分布不平衡时,使用的框数量较少(98, 1k, 8 - 26k),而RetinaNet约使用100k个框。大量前景样本虽能提供大量训练示例,但容易导致模型学习检测简单目标,而忽略困难目标,降低最终准确性。RetinaNet通过引入焦点损失(focal loss)来解决这个问题,通过控制变量γ和α来平衡分类的难易部分,同时引入金字塔网络提高速度和准确性。
对于利用社交媒体辅助灾害管理的问题,选择Twitter作为平台,因为它是一个微博客社交媒体平台,数据可通过API获取,且在紧急情况下是重要的通信媒介。
相关研究回顾
- Nouar等人的实验 :实验了CNN、S - CNN和HELM三种
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



