CE玩家

人生最大的快乐,就是做别人说你做不到的事。

[反演] Project Euler 608. Divisor Sums

D(m,n)=∑d|m∑k=1nσ0(kd)" role="presentation">D(m,n)=∑d|m∑k=1nσ0(kd)D(m,n)=∑d|m∑k=1nσ0(kd)D(m,n)=\di...

2018-01-29 07:47:32

阅读数:138

评论数:0

[数论 拓展欧拉定理] BalkanOI 2016. Power-towers

题目大概是求这个东西模 mm由拓展欧拉定理ab≡⎧⎩⎨⎪⎪ab%ϕ(p)           gcd(a,p)=1ab                  gcd(a,p)≠1,b<ϕ(p)ab%ϕ(p)+ϕ(p)    gcd(a,p)≠1,b≥ϕ(p)   (modp)a^b\equiv ...

2017-10-31 11:41:03

阅读数:169

评论数:0

[数论 && 二次剩余 && BSGS] Codechef FN. FIBNACCI NUMBER

给个传送门 听vectorxj大神讲过二次剩余这题的第一反应就是求出5的二次剩余,看看能不能解方程。 设x=5√x=\sqrt 5,y=1+x2y={1+x\over 2}那么1x(yn−(1−y)n)≡C(modP){1\over x}(y^n-{({1\over -y})^n})\equi...

2017-09-06 21:04:47

阅读数:313

评论数:0

[数论 反演]BZOJ4816 [Sdoi2017]数字表格

推一推 答案是∏T(∏d|Tfμ(Td)d)⌊nT⌋⌊mT⌋\prod_T(\prod_{d|T}f_d^{\mu({T\over d})})^{\lfloor{n\over T}\rfloor\lfloor{m\over T}\rfloor}O(nlnn)O(n\ln n)筛一下括号里的东西,...

2017-09-06 20:55:48

阅读数:214

评论数:0

[数论 反演 && 莫队] hdu4676 . Sum Of Gcd

假设我们知道一个区间内数字 ii 是否出现,另它为 bib_i 推一推 ∑i=1n∑j=1ngcd(i,j)×bi×bj\sum_{i=1}^{n}\sum_{j=1}^ngcd(i,j)\times b_i\times b_j=∑Tf(T)(∑T|ibi)2=\sum_Tf(T)(\sum_...

2017-09-06 20:50:14

阅读数:289

评论数:0

[数论 斐波那契] 51nod1355. 斐波那契的最小公倍数

进入斐波那契领域的第一题… 不要脸地截图了Manchery的博客……原文在这里#include <cstdio> #include <iostream> #include <algorithm>using namespace std;const int N...

2017-09-03 21:38:13

阅读数:310

评论数:1

[数论] Codeforces 516E. Drazil and His Happy Friends

一个点 ii 在 TT 时刻变成特殊点,那么点 (i+N)%M(i+N)\%M 会在 T+NT+N 时刻变成特殊点 (N和M可以互换) 这样也是分成了 gcd(N,M)gcd(N,M) 个环,可以证明,每个点与它在环中的下一个点之间的点都是由它覆盖的。 每个环单独处理就可以了。#include...

2017-09-02 09:16:40

阅读数:215

评论数:0

[数论] Codeforces819D. Mister B and Astronomers

另 S=∑aiS=\sum a_i 一个人能看到第 ii 个星星,那么他在下一个轮回能看到 (i+S)%T (i+S)\%T 星星。 这样的话就可以把 TT 个星星,分成 gcd(S,T)gcd(S,T)个环,每个环大小为 Tgcd(S,T)T\over gcd(S,T),每个人就在一个环上,...

2017-09-02 09:10:05

阅读数:171

评论数:0

[数论 反演] HDU6053. TrickGCD

可以先容斥一下,用所有方案减去gcd为1的方案 那么只要能求gcd为1的方案就可以了 推一下式子 ∑i1=1a1∑i2=1a2∑i3=1a3…∑in=1an[gcd(i1,i2,i3,..,in)=1]\sum_{i_1=1}^{a_1}\sum_{i_2=1}^{a_2}\sum_{i_3...

2017-07-28 12:09:51

阅读数:260

评论数:0

[51nod 1258] [伯努利数] [多项式求逆] [任意模数NTT] 序列求和 V4

接http://blog.csdn.net/coldef/article/details/57908865上次做一套模拟赛的时候,其中需要求自然数k次幂和,然后我只会n^2的…我记得n^2有20分,nlogn求可以爆到90分…… ——鏼鏼鏼2015年国家集训队论文大概就这样多项式求个逆,求出...

2017-06-06 11:54:30

阅读数:1249

评论数:0

[BZOJ3944]SUM 杜教筛

题意求∑ni=1μ(i)\sum_{i=1}^{n}\mu(i)和∑ni=1ϕ(i)\sum_{i=1}^{n}\phi(i)1. ∑ni=1∑d|iμ(i)=1=∑ni=1∑⌊ni⌋j=1μ(j)\sum_{i=1}^{n}\sum_{d|i}\mu(i)=1=\sum_{i=1}^{n}\s...

2017-01-24 15:44:02

阅读数:562

评论数:0

[HDU5942] Just a Math Problem

题意求∑ni=1g(i),g(i)=2f(k),f(k)\sum_{i=1}^{n}g(i),g(i)=2^{f(k)},f(k)为kk的不同质因子个数。Ans=∑ni=12f(k)Ans=\sum_{i=1}^n 2^{f(k)}       =∑ni=1∑k|iμ2(k)~~~~~~~=\su...

2017-01-21 10:57:49

阅读数:561

评论数:0

[BZOJ1965][Ahoi2005]SHUFFLE 洗牌

题意一堆n张牌的牌堆,每次洗牌后编号为xx的牌会在第2x%(n+1)2x\%(n+1)的位置,求mm次洗牌后第LL张牌的初始编号。可列出方程     x∗2m≡L(mod n+1)~~~~x*2^m\equiv L(mod~n+1) ∴ x∗2m+(n+1)y=L\therefore~x*2^...

2016-12-15 18:35:14

阅读数:319

评论数:0

[BZOJ2186][Sdoi2008]沙拉公主的困惑

题意求n!n!中与m!m!互素的数的个数。这是我刚学逆元打的第一道题,当然是看别人的题解后打的……Ans=ϕ(m!)∗n!/m!%pAns=\phi(m!)*n!/m!\% p ∵ϕ(m!)=m!∏(pi−1)/pi%p\because\phi(m!)=m!\prod{(pi-1)/pi}\% ...

2016-12-14 20:09:51

阅读数:305

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭