CE玩家

人生最大的快乐,就是做别人说你做不到的事。

[多项式exp] LOJ#556. 「Antileaf's Round」咱们去烧菜吧

学一发分治FFT求多项式exp 感觉这种打法应该比牛顿迭代好打多了 #include <cstdio> #include <iostream> #include <algorithm&...

2018-03-06 10:47:33

阅读数:148

评论数:0

[链剖 FFT] LOJ#6289. 花朵

树形DP的转移是一个卷积的转移形式 可以先链剖,一个点的轻儿子先合并,然后一条重链用分治FFT合并 #include <cstdio> #include <iostream> #include &...

2018-03-05 10:34:14

阅读数:110

评论数:0

[Bluestein's Algorithm DFT] Codechef REALSET. Petya and Sequence

A和B的运算是卷积形式 考虑把A和B DFT D(A)∗D(B)=0,D(B)≠0D(A)∗D(B)=0,D(B)≠0D(A)*D(B)=0 , D(B)\neq0 也就是 A DFT后至少有一个0 求出模某个质数意义下的 2n2n2n 次单位根 用Bluestein’s Algorit...

2018-03-01 16:46:25

阅读数:91

评论数:0

[卷积定理] LOJ#548. 「LibreOJ β Round #7」某少女附中的体育课

设变换矩阵为 TTT 由卷积定理可以知道 对于 TTT 的每一行的任意 i,ji,ji,j 满足 xi×xj=xi opt xjxi×xj=xi opt xjx_i\times x_j = ...

2018-02-26 10:40:25

阅读数:148

评论数:0

[矩阵树定理 DFT] LOJ#6271. 「长乐集训 2017 Day10」生成树求和 加强版

因为是三进制不进位加法,所以三进制下每一位是独立的 那么只要求出 fi" role="presentation">fifif_i,生成树边权和在模三意义下为 i" role="presentation">iii 的方案数 ...

2018-02-06 20:48:45

阅读数:206

评论数:0

[分治FFT] LOJ#6183. 看无可看

推一推 fn" role="presentation">fnfnf_n 的通项 fn=a×3n−b×(−1)n" role="presentation&...

2018-02-03 16:44:33

阅读数:194

评论数:0

[倍增矩乘 FFT] LOJ#6275. 棋盘

考虑dp fi,s,j" role="presentation">fi,s,jfi,s,jf_{i,s,j} 表示前 i" role="presentation">iii 列,最后一列的状态是 s" role=&q...

2018-02-03 16:40:16

阅读数:132

评论数:0

[容斥 & 状压DP & FFT] Tco 2016 Final. HamiltonianPaths

相当于是问有多少种排列,使得相邻的点之间没有边 考虑容斥 一张图中选了 dd 条边,那么会形成 n−dn-d 条链,设所有图中的链总共有 xx 条,那么答案乘上 x!x! 只要DP出形成 aa 条链的方案数,然后NTT一下就可以了// BEGIN CUT HERE // END CUT H...

2018-01-03 18:37:11

阅读数:120

评论数:0

[FFT] Atcoder AGC005F. Many Easy Problems

每个点的贡献是这个点出现在多少个方案中 方案数是 (nk)−∑(Sik){n\choose k}-\sum{S_i\choose k},SiS_i 表示删去这个点后剩下的子树的大小那么答案就是n(nk)−∑i=knai(ik)n{n\choose k}-\sum_{i=k}^n a_i{i\ch...

2017-12-22 18:50:51

阅读数:171

评论数:0

[第二类斯特林数 FFT] BZOJ5093. 图的价值

怕是一道套路题…然而这种题还是不太会 考虑每个点的贡献都是相同的 那么答案就是 n2(n−12)∑i=0n−1(n−1i)ikn2^{n-1\choose 2}\sum_{i=0}^{n-1}{n-1\choose i}i^kiki^k 用第二类斯特林数带进去得到n2(n−12)∑i=0n−1...

2017-12-09 23:30:00

阅读数:166

评论数:0

[FWT] Codeforces663E .Binary Table

套路题VP的时候发现这题过的人很多…把每一列状压,每一列就可以表示成小于 2202^{20} 的数字令 aia_i 为状态 ii 出现的次数, bib_i 为状态 ii 的贡献(也就是反转或不反转的1的个数的较小值)SS 表示哪些列被反转那么答案就是 minS{∑ai×bi⊕S}\min_S\{\...

2017-10-17 10:33:37

阅读数:158

评论数:0

[多维FFT Bluestein′s Algorithm] Codechef October Challenge 2017 .Chef and Horcrux

题目里那个 其实不重要,只要能算出 pip_i 就行了pip_i 的话发现就是个多维FFT的转移形式到Hillan大佬博客里拷了个代码改一改就好了…Bluestein算法里的FFT可以用暴力卷积代替,因为数据范围小FFT常数大#include<cstdio> #include<...

2017-10-17 07:47:48

阅读数:417

评论数:0

[FWT && 链分治] BZOJ4911.[Sdoi2017]切树游戏

可以看immortalCO大佬的博客我是参考了Manchery的代码…#include <cstdio> #include <iostream> #include <algorithm> #include <vector>using namespac...

2017-09-27 21:43:16

阅读数:798

评论数:0

[DP][倍增NTT]LOJ#6059. 2017 山东一轮集训 Day1. Sum

另fi,j,kf_{i,j,k}表示前ii位,模pp为jj,和为kk的方案数列出DP方程 fi,j,k=∑s=09fi−1,(js)%p,k−sf_{i,j,k}=\sum_{s=0}^9 f_{i-1,({j\over s})\%p,k-s} n这么大,一看就要倍增,j很小,倍增的时候可以直...

2017-07-07 16:58:01

阅读数:425

评论数:0

[LOJ #6156][找原根][FFT || NTT] A*B Problem

题目要求对于所有0≤k<m0\leq k<m的kk都输出解,可以考虑anskans_k的生成函数。 ansk=∑i×j=kai∗ajans_k=\sum_{i\times j=k} a_i*a_j aia_i为ii的出现次数,这样可以矩乘优化,但是复杂度太大,因为m是质数,所以依然...

2017-07-04 17:16:24

阅读数:419

评论数:2

[BZOJ3992] [SDOI2015] [NTT] 序列统计

先写出DP方程 f(i,j)f(i,j)表示放了ii个数,乘积模mm为jj的方案数 那么f(i,j)=∑ab=j,a∈S,b∈Sf(i−1,a)∗f(f−1,b)f(i,j)=\sum _{ab=j,a\in S,b\in S} f(i-1,a)*f(f-1,b) 这个可以用矩阵+快速幂优化...

2017-06-06 17:37:28

阅读数:299

评论数:0

[BZOJ3625][Codeforces Round #250][多项式求逆][多项式开根]小朋友和二叉树

模板题 题解#include <cstdio> #include <iostream> #include <algorithm> #include <string> #include <cstring> #define N 300010...

2017-06-04 19:48:18

阅读数:524

评论数:0

[BZOJ3456] [多项式求逆] 城市规划

多项式求逆模板题%%%Manchery#include <cstdio> #include <iostream> #include <algorithm> #define N 390010 #define P 1004535809 #define G 3usin...

2017-06-04 19:46:41

阅读数:278

评论数:0

[BZOJ4259][FFT]残缺的字符串

复习一下FFT http://blog.csdn.net/u011542204/article/details/50708834 感觉这种字符串匹配的方法很棒啊 然而我的代码被卡常卡内存……#include <cstdio> #include <iostream> #...

2017-04-10 14:33:10

阅读数:232

评论数:0

[BZOJ3509][CodeChef][FFT][分块]COUNTARI

分块FFT练习题#include <cstdio> #include <iostream> #include <algorithm> #include <cstring> #include <string> #include <cm...

2017-02-23 15:37:50

阅读数:301

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭