[杜教筛 反演] LOJ#6229. 这是一道简单的数学题

推一推式子可以得到

ans=d=1ni=1ndj=1iij[gcd(i,j)=1]

有一个经典的等式是

i=1ni[gcd(i,n)=1]=[n=1]+nφ(n)2

所以就有

ans=n2+12d=1ni=1ndi2φ(i)

考虑 ni=1i2φ(i) 的出现次数,可以得到

ans=n2+12i=1ni2φ(i)ni

杜教筛

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <map>

using namespace std;

typedef long long ll;

const int N=1000010,P=1e9+7,inv2=P+1>>1,inv6=(P+1)/6;

int n,lim,p[N],phi[N],pre[N];

inline void Pre(const int n){
  phi[1]=1;
  for(int i=2;i<=n;i++){
    if(!p[i]) p[++*p]=i,phi[i]=i-1;
    for(int j=1;j<=*p && 1LL*p[j]*i<=n;j++){
      p[p[j]*i]=1;
      if(i%p[j]) phi[i*p[j]]=phi[i]*phi[p[j]];
      else{
    phi[i*p[j]]=phi[i]*p[j];
    break;
      }
    }
  }
  for(int i=1;i<=n;i++)
    pre[i]=(pre[i-1]+1LL*phi[i]*i%P*i)%P;
}

map<ll,int> M;

inline int calc(ll l,ll r){
  l%=P; r%=P;
  return (r-l+1)*(l+r)%P*inv2%P;
}

inline int calc(ll n){
  n%=P;
  return n*(n+1)%P*(2*n+1)%P*inv6%P;
}

inline int calc2(ll l,ll r){
  return (calc(r)-calc(l-1))%P;
}

inline int calc3(ll n){
  return 1LL*calc(1,n)*calc(1,n)%P;
}

inline int S(ll n){
  if(n<=lim) return pre[n];
  if(M.count(n)) return M[n];
  int ret=calc3(n);
  for(ll i=2,j;i<=n;i=j+1){
    j=n/(n/i);
    ret=(ret-1LL*calc2(i,j)*S(n/i))%P;
  }
  return M[n]=ret;
}

int main(){
  ll n; cin>>n; Pre(lim=1e6);
  int ans=0,lst=0;
  for(ll i=1,j;i<=n;i=j+1){
    j=n/(n/i); int cur=S(j);
    ans=(ans+1LL*(cur-lst)*(n/i))%P;
    lst=cur;
  }
  ans=(ans+n)%P*inv2%P;
  printf("%d\n",(ans+P)%P);
  return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页