博客专栏  >  架构   >  机器学习&深度学习

机器学习&深度学习

机器学习&深度学习

关注
23 已关注
41篇博文
  • 如何用TensorFlow训练词向量

    前言前面在《谈谈谷歌word2vec的原理》文章中已经把word2vec的来龙去脉说得很清楚了,接下去这篇文章将尝试根据word2vec的原理并使用TensorFlow来训练词向量,这里选择使用ski...

    2017-08-24 15:21
    3616
  • GRU神经网络

    前面已经详细讲了LSTM神经网络(文末有链接回去),接着往下讲讲LSTM的一个很流行的变体。GRU是什么GRU即Gated Recurrent Unit。前面说到为了克服RNN无法很好处理远距离依赖而...

    2017-08-17 15:19
    16105
  • 谈谈谷歌word2vec的原理

    word2vec在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。谷歌开源的word2...

    2017-08-10 20:14
    3642
  • LSTM神经网络

    LSTM是什么LSTM即Long Short Memory Network,长短时记忆网络。它其实是属于RNN的一种变种,可以说它是为了克服RNN无法很好处理远距离依赖而提出的。我们说RNN不能处理距...

    2017-08-03 21:21
    4643
  • 循环神经网络

    RNN是什么循环神经网络即recurrent neural network,它的提出主要是为了处理序列数据,序列数据是什么?就是前面的输入和后面的输入是有关联的,比如一句话,前后的词都是有关系的,“我...

    2017-07-28 19:38
    2625
  • 卷积神经网络

    什么是卷积首先看卷积公式y(t)=f(t)∗g(t)=∫∞−∞f(u)g(t−u)duy(t)=f(t)*g(t)=\int_{-\infty} ^{\infty} f(u)g(t-u)du它是通过...

    2017-07-24 18:17
    2185
  • softmax的多分类

    关于多分类我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来...

    2017-07-13 17:38
    7279
  • kmeans实现文本聚类

    需求拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。kmeans谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心...

    2017-06-22 20:13
    1812
  • 开源一个文本分析项目

    Githubhttps://github.com/sea-boat/TextAnalyzerTextAnalyzera text analizer that can analyze text. so ...

    2017-06-12 18:18
    1632
  • 神经网络的交叉熵损失函数

    常见损失函数 0-1损失函数 L(Y,f(X))={1,0Y != f(X)Y = f(X)L(Y,f(X))=\begin{cases}1,& \text{Y != f(X)}\\0& \text...

    2017-07-04 18:07
    2223
  • 如何用机器学习对文本分类

    需求使用监督学习对历史数据训练生成模型,用于预测文本的类别。样本清洗主要将重复的数据删除掉,将错误无效的数据纠正或删除,并检查数据的一致性等。比如我认为长度小于少于13的数据是无效的遂将之删掉。def...

    2017-05-30 20:21
    1808
  • 机器学习之神经网络

    多层神经网络前面说到的感知器是一种最基础的神经网络,他只有输入层和输出层,感知器只能处理线性可分问题,而对于非线性问题就需要多层神经网络。一般如下图所示,有多个层,比如左边的包含输入层、隐层和输出层,...

    2017-05-18 19:23
    1411
  • 机器学习之感知器

    感知器在讲神经网络前先说说感知器,感知器是一种二分类的线性分类模型,输出值取-1或1。感知器是最基础的神经网络,理解好感知器对后面的各种神经网络模型是很有帮助的。如下图, 它可以有多个输入$(x_1...

    2017-05-04 14:37
    1114
  • 机器学习之k近邻

    核心思想KNN算法假设给定的训练集中的实例都已经分好类了,对于新的实例,根据离它最近的k个训练实例的类别来预测它的类别。即这k个实例大多数属于某个类别则该实例就属于某个类别。比如k为5,离新实例a最近...

    2017-04-28 20:36
    1071
  • TensorFlow训练Logistic回归

    Logistic回归在用线性模型进行回归训练时,有时需要根据这个线性模型进行分类,则要找到一个单调可微的用于分类的函数将线性回归模型的预测值关联起来。这时就要用到逻辑回归,之前看吴军博士的《数学之美》...

    2017-04-22 20:05
    5369
  • 机器学习之朴素贝叶斯分类

    朴素贝叶斯分类所有贝叶斯分类都是基于贝叶斯定理,朴素贝叶斯分类是贝叶斯分类中运用广泛简单的一种,另外,它还基于特征条件独立假设。贝叶斯定理贝叶斯定理是计算条件概率的公式,条件概率即是事件B发生的前提下...

    2017-04-11 19:59
    2196
  • 线性回归之最小二乘法

    线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。最小二乘法线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。最常用的方法便是最小二乘法,它是一种数学优化技术...

    2017-03-03 10:51
    4215
  • k-means聚类算法

    聚类聚类主要内容是将样本进行归类,同种类别的样本放到一起,所有样本最终会形成K个簇,它属于无监督学习。核心思想根据给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个...

    2017-03-07 22:01
    2506
  • 机器学习之层次聚类

    层次聚类聚类是将样本进行归类形成K个簇,层次聚类是其中的一种方法。它将数据组成一棵聚类树,过程可以是凝聚形式或分裂形式。核心思想凝聚是一开始将每个样本当做一个聚类,接着通过计算将距离最近的两个聚类合并...

    2017-03-12 20:12
    1777
  • 机器学习的监督学习在研究什么

    什么是监督学习简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。 监督学习核心思想 所有可能的模型函数的集合称为假设空间,$H=\left \{ f...

    2017-03-17 20:05
    2498

JDK源码
42108572
自然语言处理
1642255
mysql协议
2032850
Hazelcast
529168
通信框架Tribes
822597
集群
1764155
tomcat内核
83319056
Java并发
2273712
java开源研究
41173300
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部