博客专栏  >  综合   >  机器学习

机器学习

CS229课程讲义翻译、机器学习相关算法、python的应用实践

关注
7 已关注
50篇博文
  • 全自动机器学习神器:H2OAutoML

    引言 做机器学习的老铁们在平时训练模型时,对交叉验证、模型集成想必是绞尽了脑汁。现在我将给各位介绍一个神器。叫做H2O。在读了这篇文章后,你将会: 了解H2O是什么,在哪些地方大放异彩...

    2018-02-01 10:35
    357
  • Facebook时序预测工具Prophet实战分析

    引言 去年Facebook开源了一套时序预测工具叫做Prophet。Prophet是一个预测时间序列数 据的模型。 它基于一个自加性模型,用来拟合年、周、季节以及假期等非线性趋势。 它在至少有一年...

    2018-01-31 19:10
    264
  • 智能网联汽车计算平台关键算法综述

    摘要 本文以日本无人驾驶开源软件Autoware为参考,汇总分析了无人驾驶所涉及的基本算法,最后给出了在一些典型数据集上测试的效果。 介绍 本文将自动驾驶算法部分分成以下三个部分:场景识别、路径...

    2018-01-10 18:54
    948
  • Word2vec-Tensorflow实战

    Word2vec:Tensorflow实战 本文代码可视化过程:传送门 引言 前面我曾系统分析过Word2vec的理论及工具包的使用,那么在深度学习框架tensorflow中如何实现Word...

    2018-01-04 20:29
    455
  • K-means聚类算法原理分析与实际应用案例分析(案例分析另起一篇博客)

    引言在数据分析中,我们常常想将看上去相似或者行为形似的数据聚合在一起。例如,对一个营销组织来说,将不同客户根据他们的特点进行分组,从而有针对性地定制营销活动,这很重要。又比如,对学校老师来说,将学生分...

    2017-12-26 20:59
    337
  • Jupyter Notebook远程登陆

    引言 最近买了台性能比较好的主机,准备在上面跑跑算法之类的,本来想做个利用tensorflow实现word2vec的demo,但是我一直在笔记本上办公,笔记本上有没有安装tensorflow环境,于...

    2018-01-04 18:51
    266
  • Word2Vec总结

    最近一段时间,我写了好几篇关于Word2vec的文章,从理论部分到具体实践,现总结如下: 理论部分 轻松理解skip-gram模型 轻松理解CBOW模型 上述两篇博文从理论角度,讲述了...

    2017-12-16 19:37
    486
  • Word2vec之情感语义分析实战(part3)--利用分布式词向量完成监督学习任务

    引言这篇博客将基于前面一篇博客Part2做进一步的探索与实战。 demo代码与数据:传送门单词的数值化表示前面我们训练了单词的语义理解模型。如果我们深入研究就会发现,Part2中训练好的模型是由词汇...

    2017-12-16 18:37
    680
  • Word2vec之情感语义分析实战(part2)

    引言这一部分的内容主要是衔接前面分享的一篇文章:Word2vec之情感语义分析实战(part1)做进一步深入探讨。在本次文章中,我们将把重心放在使用Word2Vec算法创建的词向量表达上去。Word2...

    2017-12-15 00:13
    711
  • Word2vec之情感语义分析实战(part1)

    引言前面我分享了三篇文章,其中一篇:Word2vec使用手册主要专注于工具包gensim的讲解;另外两篇文章:轻松理解skip-gram模型、轻松理解CBOW模型。主要专注于Google出的关于Wor...

    2017-12-07 17:20
    1444
  • 轻松理解CBOW模型

    引言前面我分析了Word2vec的一种模型叫做skip-gram模型。在这篇文章中,我将讲述另一个word2vec模型——连续词袋模型(CBOW)模型。如果你理解skip-gram模型,那么接下来的C...

    2017-12-05 20:59
    2175
  • Word2vec使用手册

    引言Google开源的Word2vec是自然语言处理领域里面,比较好用的工具。这篇博客主要就是介绍如何在一些开源工具中使用这套工具。官方网址:传送门安装Gensim开发了一套工具箱叫做gensim,里...

    2017-12-04 14:24
    374
  • 轻松理解skip-gram模型

    引言在许多自然语言处理任务中,许多单词表达是由他们的tf-idf分数决定的。即使这些分数告诉我们一个单词在一个文本中的相对重要性,但是他们并没有告诉我们单词的语义。Word2vec是一类神经网络模型—...

    2017-12-05 16:01
    5243
  • Lightgbm-GPU运行出错(2017.11)boost::filesystem::create_directory...Abort (core dumped)

    问题描述在编译lightgbm GPU版本时并没有出错,但是在运行demo时发生了错误,错误如下: 解决方法后来发现,源文件目录:src/treelearner/gpu_tree_learner.h...

    2017-11-24 10:23
    363
  • 国内外无人驾驶技术相关调研

    引言最近在做无人驾驶相关的调研,主要调研目前主流无人驾驶公司的数据来源,软件平台,硬件平台相关的内容,现整理如下,权当做个笔记~ 接下来我将以Waymo公司的无人驾驶技术来详细讲讲这里面的一些细节。...

    2017-11-27 15:32
    1882
  • 无人驾驶避障方法研究

    引言老师和学生的关系是建立在一份错觉上。老师错以为自己可以教学生什么,而学生错以为能从老师那里学到什么。重要的是,维持这份错觉对双方而言都是件幸福的事。因为看清了真相,反而一点好处都没有。我们在做的事...

    2017-12-02 17:32
    1621
  • Xgboost参数调优的完整指南及实战

    引言Xgboost是一种高度复杂的算法可以处理各种各样的数据。相信每个用过Xgboost的人都有过这样的感受:利用Xgboost构建模型十分简单,但是用Xgboost来调参提升模型就很难了。该算法使用...

    2017-11-14 17:09
    1422
  • Gini coefficient直观的解释与实现

    引言大家在机器学习中经常会看到基尼系数的词汇,有时候在做比赛的时候,有些赛题的Scoring Metric就是基尼系数。我们去Google或者Baidu,得到的都是些不甚满意的经济学相关的解释。那么在...

    2017-11-14 12:10
    1127
  • 在分类及预测任务中对高维类别(category)变量的预处理方法

    引言众所周知,数据挖掘中大约有80%的时间被用来做数据预处理。其中高维类别数据是数据挖掘算法(比如神经网络、线性or逻辑回归、SVM)最具挑战性的数据类型。事实上,在一些像决策树或者一些规则归纳的学习...

    2017-11-12 19:20
    1222
  • 特征分析之SVD

    引言前面我们分享降维分析之PCA分析及实现,说PCA除了应用在数据降维上,还可用于特征分析。今天我们就来分享个新的特征分析的方法,叫做奇异值分解(Singular Value Decompositio...

    2017-11-09 11:56
    303
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部