博客专栏  >  综合   >  Idea与思考

Idea与思考

记录个人突发奇想的Idea,对算法或论文的思考。

关注
9 已关注
8篇博文
  • 思考: “泛化”是任人打扮的小姑娘

    官方定义 在周老师的《机器学习》一书 (P3) 中,泛化能力一词定义如下: 学得模型适用于新样本的能力,称为 “泛化”(generalization)能力。 同理,泛化误差的存在就是为了防止学...

    2018-01-19 20:20
    137
  • 思考: 现有 不平衡样本处理方法 的 缺陷

    现有的不平衡样本处理 现实中采集到的训练样本往往分布不均。如果不加处理而直接训练,往往会使得模型更侧重训练到样本数目较多的类别,而轻视了样本数目较少类别,最终影响到模型的泛化能力。 这种问题被称为...

    2018-01-19 19:58
    191
  • 思考: 根据 图片数据集 规律性 灵活设计 卷积结构

    观察 针对不同问题所采集的图片数据集往往具有一定规律性: 如果为 平视拍摄(例如普通相机拍摄),那么人们往往倾向于把要关注的事物(如人脸)置于 画面中央 。 如果为 -45°俯视拍摄(例如监控摄...

    2018-01-07 09:57
    141
  • 思考: 如何设计 输出结果 具有对称性 的 网络结构

    前言 这个Idea其实不是我想出来的。 实验室师兄参与了一个强化学习竞赛,让仿生人体学会站立行走乃至跑起来。在比赛的过程中他自己用tensorflow设计出了一个 对称性神经网络 ,能保证输出的 ...

    2018-01-07 08:55
    117
  • 思考: R-CNN系列 网络结构 设计缺陷

    观察 在 Fast R-CNN 中,网络最后部分的 cls reg (分类回归,即对框内实例进行标签分类)和 bbox reg (边界框回归,即对边界框进行平移回归)采用的是 双分支 并行 结构: ...

    2018-01-06 21:55
    210
  • 思考: 改进 现有的 网络参数初始化 方法

    现有的 网络参数 初始化 方法 全零初始化 网络参数初始化方法 最粗暴的 莫过于 全零初始化 。顾名思义,所有参数全部初始化为0。想法很好,简便省事儿,还可使得初始化全零时参数的期望与网络稳定...

    2018-01-05 10:12
    327
  • 思考: 神经网络层 的 功能识别

    基本知识 卷积操作 即为 一系列 滤波操作 之和 。 有关卷积的概念,具体可参加我的这篇文章:深度学习: convolution (卷积) 。 现有研究 Zeiler 和 Fergus 两位...

    2018-01-04 21:53
    412
  • 思考: 现有 图像分割算法 的缺陷

    设计缺陷 人们在关注图像中的生命个体(尤其是人)的时候,关注点 往往 只是目标的脸和手脚 。这部分区域虽小,却给观者提供了对目标个体进行联想的绝大部分信息。 现有的图像分割算法 却 只是对均匀权重...

    2017-12-17 09:55
    650

macOS 使用
71603
PyTorch框架
32123
论文算法
242022
git 使用
156534
LeetCode-Python
10123477
图像处理
2032652
OpenCV-Python
1959057
深度学习
7473424
Python编程
11774875
TensorFlow框架
4251658
Ubuntu使用
7126814
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部