博客专栏  >  云计算/大数据   >  算法与人工智能

算法与人工智能

剖析经典算法,设计算法,结合机器学习、深度学习等人工智能方法解决实际问题!

关注
6 已关注
54篇博文
  • 机器学习中如何解决样本不均衡的问题?

    很多机器学习算法都有一个基本假设,就是数据分布是均匀的。当我们把这些算法直接应用在实际数据中时,大多数情况下都无法取得理想的结果,因为实际数据往往分布的很不均衡,都存在长尾效应。举个例子,大部分(假如...

    2018-04-14 15:11
    28
  • 常见的损失函数总结

    损失函数(loss function)用来估量模型的预测值 f(x)f(x) 与真实值 YY 的不一致程度,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组...

    2018-04-13 17:07
    21
  • 机器学习中常见的最优化算法总结

    最优化算法的重要性不言而喻,笔者在本科的时候曾经投入不少精力参加数学建模竞赛,学习到了不少东西,也取得过一些较好的奖项。在数学建模竞赛中,优化问题占了大半江山,由此可见其在科研以及实际项目中的分量。本...

    2018-04-10 16:33
    30
  • 如何解决梯度消失和梯度爆炸?

    何为梯度消失,梯度爆炸? 目前优化神经网络的方法都是基于反向传播的思想,即根据损失函数计算的误差通过梯度反向传播的方式,指导深度网络权值的更新优化。这样做是有一定原因的,首先,深层网络由许多非线性层...

    2018-04-09 13:29
    141
  • 一个完整机器学习项目流程总结

    1. 实际问题抽象成数学问题这里的抽象成数学问题,指的我们明确我们可以获得什么样的数据,目标是一个分类还是回归或者是聚类的问题,如果都不是的话,如果划归为其中的某类问题。2. 获取数据获取数据包括获取...

    2018-04-08 13:53
    256
  • 机器学习中,为何经常要对数据归一化?

    机器学习中,为何经常要对数据归一化?原因有二:(1)归一化后加快了梯度下降求最优解的速度;(2)归一化有可能提高精度。 为什么归一化能提高梯度下降法求解最优解的速度? 假定为预测房价的例子,自变量...

    2018-04-07 16:50
    52
  • 谈谈判别式模型与生成式模型

    判别式模型与生成式模型是机器学习领域中的基本概念,今天将两者的特点总结一下,如下表所示: 对比 判别式模型 生成式模型 特点 寻找不同类别之间的最优分类面,反映异类数据之间的差异 ...

    2018-04-06 16:51
    37
  • 总结 LR 与 SVM 以及 线性回归的区别与联系

    LR 与 SVM 的联系与区别相同点 LR 与 SVM 都是分类算法; LR 与 SVM 都是监督学习算法; LR 与 SVM 都是判别模型;关于判别模型与生成模型的详细概念与理解,笔者会在下篇博文给...

    2018-04-05 15:42
    32
  • 总结 Logistic 回归与 Softmax 回归联系与区别

    Logistic 回归与 Softmax 回归是两个基础的分类模型,虽然听名字像是回归模型,实际上并非如此。Logistic 回归,Softmax 回归以及线性回归都是基于线性模型。其实 Softma...

    2018-04-03 13:27
    30
  • 简述 TensorFlow 计算模型——计算图

    Tensorflow 是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图,可以把计算图看做是一种有向图,Tensorflow 中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算...

    2018-03-26 15:54
    43
  • 浅谈 SVM

    SVM,全称是 support vector machine,中文名叫支持向量机。SVM 是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不同的数据分隔开。 如上图所示,w⃗ \...

    2018-03-25 17:11
    18
  • 牛顿迭代法求解开方问题

    五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。没有根式解不意味着方程解不出来,数学家也提供了很多方法,牛顿迭代法就是其中一种。资源来源于 ...

    2018-03-23 10:43
    73
  • 常用的激活函数对比

    神经网络中激活函数的主要作用是提供网络的非线性建模能力,如不特别说明,激活函数一般而言是非线性函数。假设一个示例神经网络中仅包含线性卷积和全连接运算,那么该网络仅能够表达线性映射,即便增加网络的深度也...

    2018-03-19 16:04
    56
  • 谈一谈正则化

    要理解正则化,首先需要了解过拟合的概念,关于过拟合,笔者在前面的博文中有专门提到,详情可参见博文:过拟合与欠拟合简要总结 以及 如何解决过拟合问题。下面结合 NG 的公开课、网络上资源解读以及自己的一...

    2018-03-17 21:23
    69
  • 如何解决过拟合问题?

    如何降低过拟合?这是深度学习中非常重要的问题。关于过拟合的相关概念和过拟合带来的危害,可参考笔者之前的博客:过拟合与欠拟合简要总结。如何解决过拟合?1. 获取和使用更多的数据集对于解决过拟合的办法就是...

    2018-03-04 14:50
    113
  • 后台执行命令 nohup 以及强制结束进程命令 kill

    通过终端远程操作服务器时,难免要使特定进程处于持续运行状态,例如深度学习训练网络参数,但又不可能长时间不间断操作终端,我们希望将进程保持后台持续运行,这里提供两个思路:(1)docker 内运行,退出...

    2018-02-01 19:18
    232
  • GPU状态监测 nvidia-smi 命令详解

    在进行深度学习实验时,GPU 的实时状态监测十分有必要。今天详细解读一下 nvidia-smi 命令。上图是服务器上 GeForce GTX 1080 Ti 的信息,下面一一解读参数。 上面的表格中...

    2018-02-01 16:43
    490
  • 整数除法的原理

    资源来源于 LeetCode29 —— Divide Two Integers. 题目描述如下所示: 这道题让我们求两数相除,而且规定我们不能用乘法,除法和取余操作,比较直接的方法是用被除数一直减去...

    2018-02-25 17:18
    86
  • 内排序算法之 —— 基数排序

    基数排序是一种常见的算法,虽然在各个数据结构教材中都能看到,但在面试或笔试中却很少遇到,本篇博客简要讲解基数排序的算法原理和效率。基数排序不同于其他的排序算法,它不是基于比较的算法。基数排序是一种借助...

    2018-02-24 18:41
    102
  • 内排序算法之 —— 归并排序

    归并排序的基本思想是:首先,将 R[0..n-1] 看成是 n 个长度为1的有序表,将相邻的有序表成对归并,得到n/2个长度为2的有序表;然后,再将这些有序表成对归并,得到n/4个长度为4的有序表,如...

    2018-02-24 17:25
    64

开发工具
1797017
Linux
1964800
IOS开发
4247973

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部