博客专栏  >  编程语言   >  OpenCV By Python

OpenCV By Python

目前介绍Python3 操作OpenCV3系列的文章很少,所以写一个专题

关注
27 已关注
27篇博文
  • Python3与OpenCV3.3 图像处理(二十五)--开闭操作(补充)

    一、顶帽原图像与开操作之间的差值图像二、黑帽闭操作图像与原图像的差值图像三、形态学梯度1、基本梯度:膨胀后的图像减去腐蚀后的图像得到的差值图像2、内部梯度:原图像减去腐蚀之后的图像得到的差值图像3、外...

    2018-01-02 23:01
    364
  • Python3与OpenCV3.3 图像处理(二十四)--开闭操作

    一、什么是开操作和闭操作 闭操作:  1、图像形态学的重要操作之一,基于膨胀与腐蚀操作组合形成的  2、主要是应用在二值图像分析中,灰度图像也可以  3、开操作=膨胀+腐蚀,输入图像+...

    2017-12-28 22:52
    749
  • Python3与OpenCV3.3 图像处理(二十三)--膨胀与腐蚀

    一、关于图形形态学 是图像处理学科的一个单独分之学科;灰度与二值图像处理中重要的手段;是由数学的集合论等相关理论发展起来的 二、什么是膨胀和腐蚀 膨胀就是求局部最大值的操作 ...

    2017-12-27 22:12
    358
  • Python3与OpenCV3.3 图像处理(二十二)--对象测量(纯代码)

    import cv2 as cv import numpy as np def measure_object(img): gray=cv.cvtColor(img,cv.COLOR_RGB2...

    2017-12-24 20:18
    408
  • Python3与OpenCV3.3 图像处理(二十一)--轮廓发现

    一、什么是轮廓发现 是基于图像边缘提取的基础,寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓的发现 二、轮廓发现API findContours 发现轮廓 drawContours绘...

    2017-12-21 23:02
    875
  • Python3与OpenCV3.3 图像处理(二十)--圆检测

    这节同样是代码,代码比较简单,基本上都能看懂 import cv2 as cv import numpy as np def detect_circles(img): dst=cv.pyrM...

    2017-12-20 22:46
    466
  • Python3与OpenCV3.3 图像处理(十九)--直线检测

    这节课能容不多,基本上是遵循规律编写代码即可 import cv2 as cv import numpy as np def line_detection(img): """方法一""" ...

    2017-12-19 23:28
    211
  • Python3与OpenCV3.3 图像处理(十八)--Canny边缘提取

    一、什么是边缘检测 图像的边缘检测的原理是检测出图像中所有灰度值变化较大的点,而且这些点连接起来就构成了若干线条,这些线条就可以称为图像的边缘。 二、canny 算法五步骤 高斯模糊灰度转...

    2017-12-17 15:30
    1584
  • Python3与OpenCV3.3 图像处理(十七)--图像梯度

    一、什么是图像梯度 可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导: 图像梯度: G(x,y) = dx i + dy j; dx(i,j) = I(i+1,j)...

    2017-12-14 22:27
    357
  • Python3与OpenCV3.3 图像处理(十六)--图像金字塔

    一、什么是图像金字塔 图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合...

    2017-12-12 23:44
    429
  • Python3与OpenCV3.3 图像处理(补)--第十五节补充

    在图片比较大的情况下,使用第十五节讲的方法,会出现处理速度慢和处理效果不佳的情况。对于超大图象二值化一般都会进行分块。超大图象一般会分块以后使用全局二值化,或者使用局部二值化。并且应使用自适应阈值,全...

    2017-12-10 22:48
    335
  • Python3与OpenCV3.3 图像处理(十五)--图像二值化

    一、什么是二值图像 图像中只有0和1,即1表示黑色,0表示白色   二、图像二值化的方法 图像二值化的方法:全局阈值,局部阈值。一般来说局部阈值要优于全局阈值。在OpenCV中...

    2017-12-09 18:40
    295
  • Python3与OpenCV3.3 图像处理(十四)--模板匹配

    一、什么是模板匹配 在整个图像区域发现与给定子图像匹配的区域,模板匹配的工作方式是在待检测图像上从左到右,从上到下计算模板图象与重叠子图像的匹配度,匹配度越大,两者越相同 二、Open...

    2017-12-07 23:39
    888
  • Python3与OpenCV3.3 图像处理(十三)--反射投影

    一、什么是反射投影 简单的说就是通过给定的直方图信息,在图像找到相应的像素分布区域 二、反射投影的应用 物体跟踪、定位物体等 三、示例代码 import ...

    2017-12-07 00:44
    493
  • Python3与OpenCV3.3 图像处理(十二)--图像直方图应用

    一、调节对比度 import cv2 as cv def equalHist(image): """直方图均衡化,图像增强的一个方法""" #彩色图片转换为灰度图片 ...

    2017-12-05 23:30
    712
  • Python3与OpenCV3.3 图像处理(十一)--图像直方图

    一、什么是图像直方图 由于其计算代价较小,且具有图像平移、旋转、缩放不变性等众多优点,广泛地应用于图像处理的各个领域,特别是灰度图像的阈值分割、基于颜色的图像检索以及图像分类。 二、应...

    2017-12-05 00:25
    647
  • Python3与OpenCV3.3 图像处理(十)--EPF

    一、什么是EPF 高斯模糊只考虑了权重,只考虑了像素空间的分布,没有考虑像素值和另一个像素值之间差异的问题,如果像素间差异较大的情况下(比如图像的边缘),高斯模糊会进行处理,但是我们不需要处理边缘,要...

    2017-12-03 13:56
    431
  • Python3与OpenCV3.3 图像处理(九)--高斯模糊

    一、什么是高斯模糊 把要模糊的像素色值统计,用数学上加权平均的计算方法(高斯函数)得到色值,对范围、半径等进行模糊 二、高斯模糊的应用场景 一些美颜软件、美颜相机上的磨皮和毛...

    2017-12-01 00:13
    685
  • Python3与OpenCV3.3 图像处理(八)--模糊

    一、模糊方式以及每种方式的使用场景 模糊操作方式: 均值模糊:一般用来处理图像的随机噪声中值模糊:一般用来处理图像的椒盐噪声自定义模糊:对图像进行锐化之类的操作 二、模糊基本...

    2017-11-28 23:31
    763
  • Python3与OpenCV3.3 图像处理(七)--洪填充

    一、本节简介 本节主要讲解洪填充的简单使用,以及洪填充的概念 二、什么是洪填充 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是 ...

    2017-11-27 23:21
    1317
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部