博客专栏  >  云计算/大数据   >  台大林轩田机器学习课程笔记

台大林轩田机器学习课程笔记

林老师上课讲得很好

关注
1 已关注
27篇博文
  • 机器学习技法-Gradient Boosted Decision Tree

    大纲上节课我们主要介绍了Random Forest算法模型。Random Forest就是通过bagging的方式将许多不同的decision tree组合起来。除此之外,在decision tree...

    2017-12-18 11:50
    45
  • 机器学习技法-Random Forest

    大纲上节课我们主要介绍了Decision Tree模型。Decision Tree算法的核心是通过递归的方式,将数据集不断进行切割,得到子分支,最终形成数的结构。C&RT算法是决策树比较简单和常用的一...

    2017-12-16 21:57
    69
  • 机器学习技法-Decision Tree

    大纲上节课我们主要介绍了Adaptive Boosting。AdaBoost演算法通过调整每笔资料的权重,得到不同的hypotheses,然后将不同的hypothesis乘以不同的系数α进行线性组合。...

    2017-12-15 18:31
    257
  • 机器学习技法-Adaptive Boosting

    大纲上节课我们主要开始介绍Aggregation Models,目的是将不同的hypothesis得到的gtg_t集合起来,利用集体智慧得到更好的预测模型G。首先我们介绍了Blending,Blend...

    2017-12-15 15:38
    149
  • 机器学习技法-Blending and Bagging

    大纲上节课我们主要介绍了Support Vector Regression,将kernel model引入到regression中。首先,通过将ridge regression和representer...

    2017-12-14 15:16
    256
  • 机器学习基石-Support Vector Regression

    大纲上节课我们主要介绍了Kernel Logistic Regression,讨论如何把SVM的技巧应用在soft-binary classification上。方法是使用2-level learni...

    2017-12-09 16:21
    46
  • 机器学习技法-Kernel Logistic Regression

    大纲上节课我们主要介绍了Soft-Margin SVM,即如果允许有分类错误的点存在,那么在原来的Hard-Margin SVM中添加新的惩罚因子C,修正原来的公式,得到新的αn\alpha_n值。最...

    2017-12-07 15:38
    198
  • 机器学习技法-Soft-Margin Support Vector Machine

    大纲上节课我们主要介绍了Kernel SVM。先将特征转换和计算内积这两个步骤合并起来,简化计算、提高计算速度,再用Dual SVM的求解方法来解决。Kernel SVM不仅能解决简单的线性分类问题,...

    2017-12-05 16:38
    60
  • 机器学习技法-Kernel Support Vector Machine

    大纲 上节课我们主要介绍了SVM的对偶形式,即dual SVM。Dual SVM也是一个二次规划问题,可以用QP来进行求解。之所以要推导SVM的对偶形式是因为:首先,它展示了SVM的几何意义;然后,...

    2017-12-04 19:18
    49
  • 机器学习基石-Dual Support Vector Machine

    上节课我们主要介绍了线性支持向量机(Linear Support Vector Machine)。Linear SVM的目标是找出最“胖”的分割线进行正负类的分离,方法是使用二次规划来求出分类线。本节...

    2017-12-03 11:39
    67
  • 机器学习技法-Linear Support Vector Machine

    大纲Large-Margin Separating Hyperplane由于PLA算法的随机性,可能得到多条分割超平面,那么那条是最好的呢? 直觉告诉我们,最右边的是最好的。为什么呢? 先给个简单...

    2017-11-15 19:28
    79
  • 机器学习基石-The learning problem

    课程大纲What is Machine Learning1.定义机器从数据中总结经验,从数据中找出某种规律或者模型,并用它来解决实际问题。 2.机器学习的应用场景 存在隐含的模式可以学习,也就是说可...

    2017-11-16 11:20
    84
  • 机器学习基石-Learning to Answer Yes/No

    课程大纲Perceptron Hypothesis Set1.Hypothesis的线性表示 x=(x1,x2,...xd)x = (x_1,x_2,...x_d) y={+1,−1}y = \{+1...

    2017-11-16 17:30
    61
  • 机器学习基石-Types of Learning

    课程大纲Learning with Different Output Space YY按照输出空间的类型,我们可以把机器学习问题分为四类 binary classification:y={−1.+1}...

    2017-11-16 20:27
    55
  • 机器学习基石-Feasibility of Learning

    大纲Learning is ImpossibleNo Free Lunch Theory假设有8个hypothesis,这8个hypothesis在D上,对5个训练样本的分类效果效果都完全正确。但是在...

    2017-11-18 10:05
    130
  • 机器学习基石-Training versus Testing

    大纲Recap and Preview下图是到目前为止,我们所能了解到的机器学习的基本流程该流程图说明,用于训练的训练数据DD和用于测试演算法所选择的最好的假设gg的数据都来自同一分布,并且|H|\v...

    2017-11-18 19:30
    82
  • 机器学习基石-The theory of generation

    大纲Restriction of Break Point我们发现,当N>kN>k时,break point k限制了mH(N)m_H(N)最大值的大小,也就是说,影响mH(N)m_H(N)大小的因素有...

    2017-11-18 22:00
    67
  • 机器学习基石-The VC Dimension

    大纲Definition of VC dimension1 回顾首先,我们知道如果一个假设空间H有break point k,那么它的成长函数是有界的,它的上界称为Bound function。根据数...

    2017-11-19 14:55
    129
  • 机器学习基石-Noise and Error

    大纲Noise and Probabilistic Target以前的VC Bound在没有noise的条件下是成立的,但如果引入noise,是否还依旧成立?Probabilistic Marbles...

    2017-11-19 21:14
    77
  • 机器学习基石-Linear Regression

    大纲Linear Regression Problem当y∈R时y \in R时,我们就成为机器学习问题为回归问题1 Linear Regression Hypothesish(x)=wTxh(x) ...

    2017-11-20 15:19
    79

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部