博客专栏  >  研发管理   >  机器学习

机器学习

该专栏主要包括台大教授李宏毅老师的学习笔记,周志华老师喜瓜书笔记、吴恩达cs229的课程笔记以及总结的十大机器学习算法~欢迎共同学习~~~~

关注
5 已关注
42篇博文
  • 机器学习.周志华《13 半监督学习 》

    半监督学习SSL的3种假设:(1) 平滑假设(Smoothness Assumption) 位于稠密数据区域的两个距离很近的样例的类标签相似,当两个样例北稀疏区域分开时,它们的类标签趋于不同。 (2)...

    3天前 10:48
    148
  • 机器学习.周志华《12 计算学习理论 》

    直观的解释:http://www.dataguru.cn/article-11253-1.html 基础知识计算学习理论(computational learning theory)是通过“计算”来研...

    4天前 08:39
    15
  • 机器学习.周志华《11 特征选择与稀疏学习》

    特征选择:子集搜索与评价属性:特征相关特征:对当前学习任务有用的特征;无关特征:对当前学习任务无用的特征;特征选择(数据预处理的一种):从给定的特征集合中选出相关特征子集的过程;特征选择的原因:减轻由...

    5天前 09:38
    15
  • 机器学习中的数据不平衡解决方案大全

    原英文文章:https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-data.html在机器学习任务中,我们经常会遇到这种困扰...

    6天前 13:09
    21
  • 机器学习.周志华《10 降维与度量学习》

    概述--------------------------------------------------------------------------------------------------...

    2018-04-15 20:22
    43
  • 机器学习.周志华《9 聚类》

    目录:聚类任务性能度量距离计算原型聚类密度聚类层次聚类方法聚类任务聚类:经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的...

    2018-04-13 09:30
    28
  • 机器学习.周志华《8 集成学习》

    个体与集成集成学习的概念:通过构建并结合多个学习期来完成学习任务,通过投票(voting)产生;同质(homogeneous):多个“基学习器(base learner)”集成的学习器;(个体分类器算...

    2018-04-08 10:57
    54
  • 机器学习.周志华《7 贝叶斯分类器》

    贝叶斯决策论贝叶斯公式:贝叶斯决策论:是概率框架下实施决策的基本方法;贝叶斯分类器:是利用概率的知识完成数据的分类任务,在机器学习中使用贝叶斯决策论实施决策的基本方法也是在概率的框架下进行的,它是考虑...

    2018-04-06 08:54
    29
  • 机器学习.周志华《6 支持向量机》

    间隔与支持向量 分类学习的最基本想法就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开。能将训练样本划分开的平面可能有很多个,选择位于两类训练样本正中间的划分超平面,原因是这个超平面...

    2018-04-05 11:55
    31
  • 机器学习.周志华《5 神经网络》

    神经元模型:                            激活函数:感知机和多层网络:感知机就是指由两层神经元组成,输入层接收外界输入信号后传递给输出层,输出层是M-P神经元,也称“阈值逻辑...

    2018-04-04 14:35
    17
  • 机器学习.周志华《4 决策树》

    决策树 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。4.1 基本流程决策树的生成是一个递归过程:以下3种情况会导致递归返回1) 当前节点包含的样本全属于同一类...

    2018-04-02 13:21
    18
  • 机器学习.周志华《3 线性模型》

    线性模型: 1. 假定示例有dd个属性,x=(x1,x2,...,xd)2. 试图通过属性的线性组合进行预测用向量形式表示就是: 线性模型虽然简单,但却是基础。先研究线性、单属性的线性回归问题,其次进...

    2018-04-01 22:23
    40
  • 机器学习.周志华《1 绪论 and 2 模型评估与选择》

    第一章:绪论特征向量、数据集、学习/训练、样例、分类、回归、聚类、泛化能力:学到模型适用于新样本的能力;衍生:泛化误差;归纳偏好:算法在机器学习过程中对某种假设的偏好;“奥卡姆剃刀”原则:若有多个假设...

    2018-04-01 22:16
    81
  • 《机器学习实战》——logistic回归

    转自:http://lib.csdn.net/article/machinelearning/35245 《机器学习实战》——logistic回归 作者:ztf312 说...

    2017-02-16 21:13
    684
  • 斯坦福大学cs229Andrew ng的机器学习课程

    1、斯坦福大学机器学习课程公开课: http://open.163.com/special/opencourse/machinelearning.html 2、  斯坦福大学机器学习课程原始讲义 +...

    2017-05-17 16:53
    1332
  • 概率图模型: Coursera课程资源分享和简介

    转载自:http://blog.csdn.net/thither_shore/article/details/52185758 本博客中概率图模型(Probabilistic Graphical...

    2017-12-12 20:44
    187
  • 机器学习算法---微积分与矩阵

    微积分:极限、无穷小、导数、高阶导数、泰勒级数、无穷求和、牛顿-莱布尼茨公式;牛顿法:线性代数:低维到高维、高维到低维映射都有映射规则;实例PCA:实例解析:相关算法思想:https://blog.c...

    2018-03-28 14:17
    14
  • 机器学习算法--概率与凸优化

    概率论古典概率 or 统计定义:频率现代概率 or 公理化定义:测度论(科尔莫戈罗夫)概率空间(Ω,φ,P):Ω 样本空间(最小不可分的独立互斥事件集合);φ事件(Ω的子集);P测度(事件的概率);随...

    2018-03-29 14:01
    36
  • [机器学习:李宏毅]6、Backpropagation

    反向传播

    2017-12-09 09:36
    223
  • [机器学习:李宏毅]2、回归

    waiting~

    2017-12-09 11:28
    249
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部