博客专栏  >  编程语言   >  Python 图像处理

Python 图像处理

Python 基于OpenCV库的图像处理

关注
5 已关注
23篇博文
  • 图像基础、OpenCV入门1

    1. 数字图像数字图像:将二维图像有限数字的数值像素表示。 每个像素点可有各自的颜色值,可用RGB或CMYK(青、品红、黄、黑)色域。 分辨率是度量图像内数据量多少的一个参数,通常表示成每英寸像素...

    2017-07-16 10:30
    270
  • 图像基础、OpenCV入门2——变亮、变暗、日落、水印等

    调节图像亮度调节原理:将像素值变小,全部色彩变暗;将像素值变大,全部色彩变亮。#-*- coding: utf-8 -*- import cv2 import numpy as np fn = "te...

    2017-07-18 08:48
    1260
  • 图像基础、OpenCV入门3——图像灰度化、二值化与图像加噪

    图像灰度化方法1:求出每个像素点的RGB三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量 方法2:求RGB和YUV颜色空间的变化关系,建立亮度Y与RGB三个颜色分量的对应关系:Y=0.3R...

    2017-07-20 08:44
    3242
  • 图像基础、OpenCV入门4——图像边缘算法

    欧氏距离算法将当前像素与邻接的下部和右部的像素进行比较,如果相似,则将当前像素设置为白色,否则设置为黑色。 判定像素是否相似,使用欧氏距离算法,将一个像素的三个色彩分量映射在三维空间中,如果2个像素...

    2017-07-28 12:29
    258
  • 图像基础5 图像匹配--差分矩阵求和与均值

    本系列文章是学习《机器学习实践指南 案例应用分析 第2版》的笔记。 图像匹配算法是基于像素的比较和计算来实现的方法。1. 差分矩阵求和差分矩阵=图像A矩阵数据−图像B矩阵数据差分矩阵 = 图像A矩阵...

    2017-07-28 23:51
    463
  • 图像基础6 图像匹配--欧氏距离匹配

    一、 强噪声图像匹配上一节里,使用差分算法可以在弱噪声的情况下,有较好的匹配效果。在强噪声时,欧氏距离匹配方法相对于上面的方法会有更好的效果。程序:# -*- coding: utf-8 -*- im...

    2017-07-29 21:39
    770
  • 图像基础7 图像分类——余弦相似度

    图像分类利用计算机对图像进行分析,根据图像信息的不同特征,将不同类别的图像区分开来。算法过程 1. 准备样本图像。样本图像能代表所属类别中尽可能多的图像 2. 提取每个样本的特征后,形成类别特...

    2017-07-30 16:47
    1487
  • 图像基础8 图像分类——PCA 图像特征提取算法

    本系列文章 源于《机器学习实践指南 案例应用解析》学习笔记 原书作者:麦好PCA (Principal Component Analysis),是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中...

    2017-07-31 13:12
    570
  • 图像基础9 插值与缩放

    resize函数通过OpenCV的resize函数可实现插值与缩放。void resize(InputArray src, OutputArray dst, Size dsize, double fx...

    2017-10-15 22:16
    153
  • 图像基础10 比较图片是否一样

    方法一 使用cv2 矩阵减subtract 两个图片完全一样时返回值为true 如果把一个图片转了格式,则会被为不一样 import cv2 import numpy as np file2 = "1...

    2017-10-16 22:02
    489
  • 图像基础11 仿射

    学习资源《机器学习实践指南 案例应用解析》概念仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。[1] 仿射变换是在几何上定义为两个向量空间之...

    2017-10-17 07:56
    143
  • 图像基础12 透视投影与透视变换

    学习资源《机器学习实践指南 案例应用解析》原理三维计算机图形学中的一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面不同,透视投影是指从投影中心这一点发出的直线将物体投影到图像平面上。...

    2017-10-17 08:12
    273
  • 图像基础13 灰度变换与图像增强

    学习资源《机器学习实践指南 案例应用解析》概念灰度变换是指根据某种目标条件按一定变换关系逐点改变源图像中每一个像素灰度值的方法。目的是为了改善画质,使图像的显示效果更加清晰。 图像的灰度变换处理是图像...

    2017-10-18 08:27
    341
  • 图像基础14 图像滤波与除噪——均一化块滤波(高斯、椒盐)

    均一化块滤波1. 高斯噪声滤波高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其...

    2017-10-20 08:47
    230
  • 图像基础15 图像滤波与除噪——邻域平均法

    本文学习资源《机器学习实践指南 案例应用解析》概述邻域平均法可有效消除高斯噪声,其数学公式如下: g(x,y)+1M∑(k.I)∈Sf(x−k,y−l)g(x,y)+\frac{1}{M}\sum_...

    2017-10-23 08:45
    524
  • 图像基础16 图像滤波与除噪——中值滤波

    本文学习资源来自《机器学习实践指南》 案例应用解析 中值滤波与邻域平均法类似,但计算的是中值,而不是平均值。具体算法是:将图像的每个像素用邻域(以当前像素为中心的正方形区域)像素的中值来代替。椒盐噪...

    2017-10-26 08:03
    126
  • 图像基础17 图像滤波与除噪——高斯滤波、双边滤波

    高斯滤波本文学习资源来自《机器学习实践指南 案例应用解析》 代码:import cv2 import numpy as np fn = "test.jpg" myimg = cv2.imread(f...

    2017-10-26 08:40
    210
  • 图像基础18 人脸辨识——人脸定位

    本文学习资源来自《机器学习实践指南 案例应用解析》 人脸辨识生物特征识别(BIOMETRICS) 技术,是指通过计算机利用人体所固有的生理特征(指纹、虹膜、面相、DNA等)或行为特征(步态、击键习惯等...

    2017-10-27 09:34
    333
  • 图像基础19 人脸辨识——人脸识别

    本文学习资源来自《机器学习实践指南》目的通过某人的一张照片,在他与别人的合影中找到他。算法描述 读取两张图像,生成图像矩阵 以两个图像矩阵为基础,调用OpenCV的相关函数完成人脸定位 读取两张图像的...

    2017-11-10 23:29
    210
  • 图像基础20 人脸辨识——人脸识别2

    本文学习资源来自《机器学习实践指南》 前一章节的图像特征码提取算法是基于像素点的三元色数值的,有时候,图像少量的像素点差异可能干扰识别结果。有两种算法可以使识别效果更好: 1. 将人脸图像大小设...

    2017-11-11 11:04
    396

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部