博客专栏  >  云计算/大数据   >  机器学习与数据挖掘

机器学习与数据挖掘

分享干货与心得,内容由浅入深,通俗易懂

关注
1 已关注
29篇博文
  • 矩阵范数与矩阵的模

    矩阵范数(matrix norm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表...

    2017-12-23 19:42
    765
  • 监督学习的分类:判别/生成模型,概率/非概率模型、参数/非参数模型

    机器学习是一个有着多分支的学科。其中,监督学习是其中发展最为成熟的分支。这不仅是由于在监督学习框架下面有各种各样的学习模型,如逻辑斯特回归、朴素贝叶斯、支持向量机等,更是因为这个框架有着坚实的理论支撑...

    2018-01-22 22:10
    132
  • 机器学习的数学(三)范数的简单介绍

    在机器学习和统计学习中,我们总能看到不同的norm(范数)出现在各种模型之中,那么到底什么是范数呢?怎么样更好的理解和应用范数呢?请参考下面的文章 什么是范数? 我们知道距离的定义...

    2018-01-25 13:08
    138
  • 用通俗易懂的方式告诉你什么是EM算法

    一、EM简介 EM(Expectation Mmaximization) 是一种迭代算法, 用于含隐变量(Latent Variable) 的概率模型参数的极大似然估计, 或极大后验概率估计 E...

    2018-02-03 19:39
    118
  • 动态规划入门之硬币问题

    问题描述 动态规划算法的核心是:每一个子问题的状态和状态的转移方程。 状态是:dp[i] ,即凑够i元最少须要的硬币的个数 转移方程是:dp[i] = min(dp[i-...

    2018-02-04 20:34
    35
  • NMF(非负矩阵分解)的场景应用

    最近在学习矩阵分析时了解到了NMF这个方法,发现其潜力巨大,应用场景广阔。目前的算法场景中,NMF可以应用的领域很广,源于其对事物的局部特性有很好的解释。在众多应用中,NMF能被用于发现数据库中的图像...

    2018-02-13 20:05
    193
  • 距离,范数与相似度

    在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。...

    2018-02-14 20:04
    231
  • 深度学习入门:手把手教你用TensorFlow搭建图像识别模块

    之前和大家简单介绍了什么是神经网络(见我的文章:一句话告诉你什么是神经网络 )。那么今天再跟大家分享一些深度学习算法在图像识别上的应用。主要内容大概可以分为如下三个部分:● 深度学习介绍;● 神经网络...

    2018-02-18 22:03
    873
  • 机器学习中的数学(二):参数估计与似然函数(MLE)

    在机器学习中,我们经常使用一个模型来描述生成观察数据的过程。例如,我们可以使用一个随机森林模型来分类客户是否会取消订阅服务(称为流失建模),或者我们可以用线性模型根据公司的广告支出来预测公司的收入(这...

    2018-02-18 22:20
    87
  • 深度学习入门:一句话告诉你什么是神经网络(CNN,RNN,DNN)

    神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosen...

    2018-02-19 20:16
    223
  • 别怕,"卷积"其实很简单

    相信很多时候,当我们在看到“卷积”时,总是处于一脸懵逼的状态,不但因为它的本义概念比较难理解,还因为它在不同的应用中发挥出的变幻莫测的作用也时常让人迷糊。但这些应用其实本质上都是同一种东西,理解了卷积...

    2018-01-17 13:15
    904
  • 什么是特征工程?如何进行特征工程?

    目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对...

    2017-12-22 23:09
    148
  • [交叉验证]机器学习中分类器的选择

    在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签...

    2017-12-22 23:12
    603
  • (PCA与信息)方差和熵

    方差和熵 最近在看主成分分析(PCA)时,在对数据进行压缩时,要求方差最大化,目的是保留数据的更多信息。根据信息论,“信息熵”用于量化信息,那么这样看来方差和信息熵都可以用于量化信息,那它们有是...

    2017-12-24 21:50
    147
  • 正交矩阵和Gram-Schmidt正交化

    正交矩阵和Gram-Schmidt正交化 在关于投影矩阵的部分,根据Strang的授课内容,我进行简单的归纳总结.知道了投影矩阵是什么,有什么用. 这篇文章仍然是关于投影矩阵的一个应用...

    2017-12-24 21:50
    124
  • 机器学习之降维方法(一)

    机器学习之降维方法(一) 1. LASSO通过参数缩减达到降维的目的。 LASSO(Least absolute shrinkage and selection operato...

    2017-12-24 21:52
    85
  • Hessian矩阵正定与函数凹凸性的关系

    1. 从矩阵变换的角度首先半正定矩阵定义为: 其中X 是向量,M 是变换矩阵我们换一个思路看这个问题,矩阵变换中,代表对向量 X进行变换,我们假设变换后的向量为Y,记做。于是半正定矩阵可以写成:这个是...

    2017-12-25 19:15
    1874
  • 优化算法中的鞍点与梯度下降

    摘要:本文将讨论寻找凸路径( convex path )时可能会遇到的不同类型的临界点( critical points),特别是基于梯度下降的简单启发式学习方法,在很多情形下会使你在多项式时间内陷入...

    2017-12-25 19:44
    602
  • 机器学习中的数学(一):线性代数

    最近开始补线代的知识,自己整理了一些必备的线代知识,有了这些基础,看大多数算法基本无需再回头找材料。 里面的60%为本科阶段学的工科线代基础,另外40%来自《矩阵分析》,《高等代数》以及《矩阵代数》...

    2018-01-10 20:56
    527
  • 关于信息熵的简单理解

    信息是我们一直在谈论的东西,但信息这个概念本身依然比较抽象。在百度百科中的定义:信息,泛指人类社会传播的一切内容,指音讯、消息、通信系统传输和处理的对象。 但信息可不可以被量化,怎样量化?答案当...

    2018-01-16 20:36
    124
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部