博客专栏  >  云计算/大数据   >  数据科学家之路

数据科学家之路

给大家分享今天的激动人心的技术与思考。

关注
0 已关注
37篇博文
  • 台大林轩田机器学习技法完全解读

    支持向量机(SVM)完全解读集成学习完全解读神经网络深度学习完全解读感谢林轩田老师!

    2018-04-07 22:11
    30
  • 台大林轩田机器学习基石&技法完全解读

    台大林轩田机器学习基石学习笔记(一键直达)台大林轩田机器学习技法完全解读(一键直达)感谢林轩田老师!

    2018-04-07 22:14
    32
  • 机器学习之梯度提升树(机器学习技法)

    梯度提升树模型(Gradient Boosted Decision Tree)与随机森林的对比前面提到的随机森林使用Bagging的方式融合起来,也就是使用bootstrapping进行抽样得到不同的...

    2018-04-07 22:01
    33
  • 台大林轩田机器学习技法集成学习完全解读

    Blending与BaggingAdaboost决策树(Decision Tree)随机森林(Random Forest)梯度提升树(GBDT)最后感谢林轩田老师!

    2018-04-07 22:07
    26
  • 机器学习之随机森林(机器学习技法)

    随机森林(RandomForest)集成学习中的Bagging通过bootstrapping的方式进行抽取不同的资料从每一堆资料中学得一个小的模型g,然后再将这些小的模型进行融合进而得到一个更为稳定的...

    2018-04-06 17:03
    63
  • 机器学习之决策树(机器学习技法)

    决策树决策树在集成学习中的地位整个集成学习会按照是否有线程的小的模型(g)分为两种。如果我们有g的话我们就会用blending。如果想一边学习g一边融合模型就会用到Bagging或AdaBoost。①...

    2018-03-31 22:16
    61
  • 机器学习之矩阵分解(机器学习技法)

    特征编码二进制向量编码现实生活中有很多的多类别问题,比如说星座、血型、科目等等。机器学习中要处理这些多类别问题就会用到像决策树和随机森林这样的模型。但是这样多类别问题的模型实在太稀缺如果我们想要让其它...

    2018-03-25 17:12
    117
  • 台大林轩田机器学习技法神经网络深度学习完全解读

    笔者能力有限欢迎大家批评 : -)机器学习之神经网络机器学习之深度学习机器学习之RBFNetwork机器学习之矩阵分解

    2018-03-25 17:17
    75
  • 机器学习之RBFNetwork(机器学习技法)

    Radial Basis Function Network 什么是Radial Basis Function放射:说明我们的计算只与我们资料点x之间的距离有关。基本函数:我们要将放射计算的模型进行线性...

    2018-03-24 22:36
    72
  • 机器学习之神经网络(机器学习技法)

    神经网络的动机感知器的线性融合前面我们知道了将简单的模型进行融合之后会得到一个非常强大的模型。我们试着将感知器(简单的二元分类模型)做线性融合之后得到下图:其中每一个节点都是一个感知器,其第一层的感知...

    2018-03-17 21:57
    368
  • 机器学习之深度学习(机器学习技法)

    深层神经网络先说说神经网络神经网络是由一个个的神经元所构成,其中每个神经元的内部都封装着一个线性或者是非线性的模型。每一个节点都会对应一个权重向量W。这个向量会与前面的输入所组合(透过tanh函数)组...

    2018-03-18 21:21
    62
  • 机器学习之Blending与Bagging(机器学习技法)

    一个融合的故事今天我的朋友向我荐股(这只股涨还是跌)我该怎么办,有以下的4种解决方法:①我只接受我最信任的朋友的意见(Validation模型检验)。②我让我的朋友们去投票然后选择票数最高的那一股。③...

    2018-03-13 22:37
    92
  • 机器学习之Adaboost(机器学习技法)

    逐步增强法(AdaptiveBoosting)引例逐步增强法的主要思想就是拿着一堆很弱的模型可以合成一个非常强大的模型(这一点与Bagging十分相似)。一个案例对算法的直观描述在课堂上老师让小孩去辨...

    2018-03-11 20:45
    49
  • 台大林轩田支持向量机(SVM)完全解读

    欢迎批评机器学习之线性支持向量机机器学习之对偶支持向量机机器学习之核函数支持向量机机器学习之软间隔支持向量机机器学习之核函数逻辑回归机器学习之支持向量机回归最后感谢林轩田老师。...

    2018-02-26 23:40
    201
  • 机器学习之支持向量机回归(机器学习技法)

    核函数山脊回归Represent Theorem表达理论就是指如果一个模型是带有L2正则化的线性模型,那么它在最佳化的时候的权重参数值W*将能够用Z空间的资料的线性组合来表示。它的推论就是L2的正则化...

    2018-02-26 23:34
    304
  • kaggle注册无法验证问题

    亲测有效,同时感谢这位博主!http://blog.csdn.net/FrankieHello/article/details/78230533

    2018-02-25 21:54
    2919
  • 机器学习之核函数逻辑回归(机器学习技法)

    从软间隔SVM到正则化从参数ξ谈起在软间隔支持向量机中参数ξ代表某一个资料点相对于边界犯错的程度,如下图:在资料点没有违反边界时ξ的值为0,在违反边界时的值就会大于0。所以总的来说ξ的值等于max(1...

    2018-02-24 18:48
    427
  • 机器学习之软间隔支持向量机(机器学习技法)

    为什么要软间隔SVM硬边距SVM的过拟合对于硬边距SVM产生过拟合的原因主要有两点:①我们选用的模型复杂度太高 ②我们坚持要将资料严格的分开。如下:从直觉来说Φ1虽然有一些犯错的地方但是它的模型复杂度...

    2018-02-21 20:04
    182
  • 机器学习之核函数支持向量机(机器学习技法)

    为什么要有个核函数在对偶支持向量机中我们谈到要避开特征转换后高VC维度空间给我们带来的计算复杂度的影响。但是单单的对偶问题没有实现这一点,对偶问题只是让计算看起来避开了VC维度带来的影响,但是这个VC...

    2018-02-20 09:44
    248
  • 机器学习之对偶支持向量机(机器学习技法)

    为什么要有一个对偶问题一般SVM的求解一般SVM的求解我们的目标就是最小化W²而且伴随着一个条件如下图:在实务上我们通常把这个标准问题转化为一个二次规划的问题(以下称之为QP问题)然后使用软件去解决这...

    2018-02-18 18:47
    133

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部