博客专栏  >  云计算/大数据   >  机器学习算法理论与实战

机器学习算法理论与实战

机器学习算法:线性回归、逻辑回归、K-最近邻、SVM、感知机、决策树、随机森林、集成学习、 机器学习工具库:Scikit-learn机器学习库、NumPy科学计算库、Matplotlib绘图库、pandas数据分析库、SciPy库、ipython NoteBook工具、

关注
4 已关注
41篇博文
  • 【神经网络】各类神经网络架构剖析(附原始论文地址)

    随着新的神经网络架构不时出现,很难跟踪这些架构。知道所有缩写(DCIGN,BiLSTM,DCGAN,任何人?)起初可能有点压倒性。 所以我决定编写一个包含许多这些体系结构的备忘单。这些大多数是神经网络...

    2018-05-20 11:25
    150
  • 【神经网络】神经网络的单元格和层

    本文展示了不同类型的神经网络细胞和各种层连接方式,但并没有真正涉及每种细胞类型的工作方式。许多细胞类型我最初给出不同的颜色以更清楚地区分网络,但是我发现这些细胞或多或少地以相同的方式工作,因此您可以在...

    2018-05-20 10:57
    80
  • 【机器学习】机器学习解释:算法是你的朋友

    浅谈机器学习方法: 我们近来常常听到术语“机器学习”,通常是在预测分析和人工智能的背景下。机器学习或多或少地是计算机学习东西而不被专门编程的一种方式。但是,这实际上是如何发生的? 总之,答案是算法。算...

    2018-05-19 15:57
    41
  • 【NumPy】NumPy实战

    原文:https://www.dataquest.io/blog/numpy-cheat-sheet/NumPy的参考文档和手册:https://docs.scipy.org/doc/NumPy是使P...

    2018-05-19 16:12
    35
  • 【图像处理】SIFT特征点学习

    原文:http://blog.sina.com.cn/s/blog_9c8bc82b0101bw02.html一、尺度不变性尺度不变性的根本原因:极值点在提取上是在尺度空间上提取的,极值点的描述又是在...

    2018-05-19 16:15
    39
  • 【Scikit-Learn】Scikit-Learn实战

    大多数正在使用Python学习数据科学的人肯定会听说过scikit-learn,这是一个开源的Python库,通过统一的界面,可以实现各种机器学习,预处理,交叉验证和可视化算法。 本文将...

    2018-05-19 16:33
    33
  • 【Pandas】Pandas实战

    这是Pandas基础知识的快速指南,您将需要开始使用Python来 快速,灵活和富有表现力的Pandas数据结构旨在使真实世界的数据分析变得更加容易,但对于刚开始使用它的人来说,这可能...

    2018-05-19 17:50
    51
  • 【Matplotlib】Matplotlib绘图实战

    这个Matplotlib教程将指导您掌握Python数据可视化的基础知识:图解,pyplot和pylab等的解剖,等等

    2018-05-19 20:06
    60
  • 【机器学习】我应该使用哪种机器学习算法?

    此资源主要面向初级到中级数据科学家或分析师,他们有兴趣识别和应用机器学习算法以解决他们感兴趣的问题。 初学者在面对各种机器学习算法时提出的一个典型问题是“我应该使用哪种算法?”问题的答案取决于许多因素...

    2018-05-19 20:46
    90
  • 【机器学习】机器学习算法之旅

    在这篇文章中,我们将介绍最流行的机器学习算法。 浏览该领域的主要算法以了解可用的方法是有用的。 有很多算法可用,当算法名称被抛出时,它会感到压倒性的,并且您只需要知道它们是什么以及它们在哪里适合。 我...

    2018-05-19 20:57
    92
  • 【pandas】pandas每次使用append追加行时都生成一个Unnamed列

    pandas每次使用append追加行时多出一个Unnamed列!解决办法:追加行数据前,read_csv函数读取数据时, 增加 index_col 参数,指定哪一行为索引行。如:test = pd....

    2018-04-18 20:26
    256
  • 【图像算法】ImageHash(Python 图像哈希库)

    用Python编写的图像哈希库。ImageHash支持:平均哈希(aHash)感知哈希(pHash)差异哈希(dHash)小波散列(wHash)要求基于PIL,numpy和scipy.fftpack(...

    2018-04-30 21:04
    149
  • 【机器学习】使用Scikit-Learn库实现感知机

    分类算法的选择:没有一种分类算法可以在所有可能的应用场景下都表现良好,只有比较了多种学习算法的性能,才能为特定问题挑选出最合适的模型。 分类器的性能、计算能力和预测能力,在很大的程度上都依赖于模型的...

    2018-02-06 15:03
    1014
  • 【机器学习】使用Scikit-Learn库实现逻辑回归(LogisticRegression)

    逻辑回归:针对二分类问题的简单但更高效的算法 逻辑回归是一个分类模型,不是回归模型。   逻辑回归是针对线性可分问题的一种易于实现且性能优异的分类模型。 逻辑回归通过一对多技术可以扩展到多类别...

    2018-02-06 15:13
    1141
  • 【机器学习】使用Scikit-Learn库的L2正则化解决过拟合问题

    欠拟合,正常,过拟合图: 偏差 - 方差权衡就是通过正则化调整模型的复杂度 正则化是解决共线性的一个很有用的方法,可以过滤数据中的噪声,并最终防止过拟合。 正则化背后的概念是引入...

    2018-02-06 15:17
    1074
  • 【机器学习】使用Scikit-Learn库实现支持向量机(SVM)最大化分类间隔

    支持向量机是一种性能强大且广泛应用的学习算法 SVM可以看做是感知机的扩展 SVM的优化目标是最大化分类间隔,间隔指两个分离的超平面间的距离,最靠近超平面的训练样本为支持向量。 ...

    2018-02-06 15:23
    1025
  • 【机器学习】使用Scikit-Learn库的核SVM解决非线性问题

    SVM很容易的使用核技巧来解决非线性可分问题   本文使用的数据集和库文件定义在该章节有定义了,链接:http://mp.blog.csdn.net/postedit/79196206 建立...

    2018-02-06 15:32
    1008
  • 【机器学习】使用Scikit-Learn库实现决策树

    决策树算法:。从树根来说,基于可获得的最大信息增益的特征来对数据进行划分通过迭代处理,在每个子节点上重复此划分过程,直到叶子结点。 剪通过枝来限定树的最大深度。   最大信息增益:   ˚F...

    2018-02-06 15:47
    1027
  • 【机器学习】使用Scikit-Learn库实现随机森林

    使用随机森林将弱分类器集成为强分类器 随机森林视为多棵决策树的集成。 集成学习的基本理念:将弱分类器集成为鲁棒性更强的模型(强分类器)。 分类器集成后具备更好的泛化误差,不容易过拟合。   ...

    2018-02-06 15:50
    1046
  • 【机器学习】使用Scikit-Learn库实现K-近邻(KNN)算法

    懒惰学习算法的典型例子。 KNN仅仅对训练集有记忆功能,不会从其他训练集中通过学习得到一个判别函数   参数化模型和非参数化模型: 1、       参数化模型,通过训练数据估计参数:感知机、...

    2018-02-06 15:51
    1065

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部