博客专栏  >  综合   >  机器学习基石笔记

机器学习基石笔记

林轩田机器学习基石笔记,视频地址: 基石:https://www.bilibili.com/video/av12463015/?from=search&seid=11307936685236699625

关注
0 已关注
18篇博文
  • 林轩田机器学习技法笔记1:Liner Support Vector Machine(SVM)

    0. 前言 机器学习技法第一课,机器学习技法将会有16课。第一课将会介绍线性支持向量机。 1. Large-Margin Separating Hyperplane 我们之前使用PLA、Pock...

    2018-02-05 22:26
    163
  • 林轩田机器学习技法笔记2:Dual Support Vector Machine

    0. 前言 上一节课我们介绍了支持向量机、margin、怎么解支持向量机等。这一节课我们将会研究支持向量机的对偶问题。 1. Motivation of Dual SVM 上一节课中我们讲到,求...

    2018-02-06 19:40
    128
  • 林轩田机器学习基石笔记2:PLA算法

    (注:笔者仍处于学习阶段,博客也是刚开始写,如有任何问题欢迎指正!) 0. 机器学习简述 机器学习的目的是通过假设函数g去近似目标函数f的过程。用一张图表示就是: 目标函数f:从特征向量X...

    2018-01-13 10:50
    36
  • 林轩田机器学习基石笔记3:机器学习分类

    笔者正处于学习阶段,任何问题欢迎指正。 0. 前言 机器学习通过样本输出维度,输入维度,学习方法等可以分成许多类别,这篇文章主要屡一下这些关系,首先看一下我做的思维导图,下面我会对每一种类别进...

    2018-01-13 21:31
    32
  • 林轩田机器学习基石笔记4:机器学习的可行性

    笔者处于学习阶段,有任何问题欢迎指正。 0. 前言 这一篇文章中我们将会对机器学习的可行性进行一次讨论,首先我们得明确一个分类器怎么才算是好的分类器呢?很简单,能准确分类的就是好分类器。但是事...

    2018-01-15 19:00
    42
  • 林轩田机器学习基石5笔记:训练和测试的不同

    1. Recap and Preview(复习和预览 ) 复习 在第一节课中讲到,机器学习的目的是训练出分类器gg,使得gg与理想分类器ff近似,也就是分类器的实际错误率(在所有数据中的错误...

    2018-01-17 19:32
    48
  • 林轩田机器学习基石心得5:Training versus Testing

    前言 之前发现 已经有不少的博主写过机器学习基石的笔记了,为了节省时间我将不再进行系统的总结,而是写一些自己的心得、感悟及稍总结下。如果要系统的学习,推荐看一个博主的文章: http://blog...

    2018-01-22 11:32
    30
  • 林轩田机器学习基石心得6:Theory of Generalization

    0. 前言 该文章是本人观看视频后的一些心得,系统笔记请前往: http://blog.csdn.net/red_stone1/article/details/71122928 1. Res...

    2018-01-22 13:37
    41
  • 林轩田机器学习基石心得7:The VC Dimension

    该文章为本人观看视频心得,详细笔记可前往: http://blog.csdn.net/red_stone1/article/details/71191232 0. 前言 前一课中着重介绍了机器能...

    2018-01-22 17:58
    23
  • 林轩田机器学习基石心得8:Noise and Error

    注:本文为博主观看视频后的心得与总结,详细笔记可戳: http://blog.csdn.net/red_stone1/article/details/71512186 0. 前言 上一节课中讲...

    2018-01-22 23:22
    27
  • 林轩田机器学习基石心得9:Linear Regression

    0. 前言 该文章是本人观看视频后的一些心得,系统笔记请前往: http://blog.csdn.net/red_stone1/article/details/71599034 这一节课主要介...

    2018-01-24 17:52
    33
  • 林轩田机器学习基石心得10:Logistic Regression

    0. 前言 这篇文章是我精简的总结了视频中第10课的内容,推荐另一篇笔记: http://blog.csdn.net/red_stone1/article/details/72229903 这...

    2018-01-25 22:48
    42
  • 林轩田机器学习基石心得11:Linear Models for Classification

    0. 前言 本篇文字是个人对机器学习基石11课的一些总结。这节课主要讲解的是线性分类模型。 1. Linear Models for Binary Classification 几种线性模...

    2018-01-30 21:13
    21
  • 林轩田机器学习基石心得12:Nonlinear Transformation

    0. 前言 上一节课中讲讲解了线性模型分类的几个问题,包括随机梯度下降、多分类问题的解决方法等。 但是之前讨论均是在数据线性可分的假设下,假如数据不是线性可分的怎么办?这一节我们讨论非线性问题。 ...

    2018-01-31 22:15
    28
  • 林轩田机器学习基石笔记13:Hazard of Overfitting

    0. 前言 之前的课程中讲到,在使用非线性分类器时,我们使用越高阶的特征转换,模型会更复杂,同时得到更高的VC维度。这节课中将会介绍这一行为导致机器学习中一个重要的问题:过拟合。 1. What ...

    2018-02-01 22:01
    35
  • 林轩田机器学习基石笔记14:Regularized

    0. 前言 上一课讲到了过拟合。什么是过拟合、过拟合什么时候发生、怎么处理过拟合等。其中有一种解决过拟合的方法是Regularized,这一节课我们将会讲解这种方法。 1. Regulariz...

    2018-02-02 23:18
    22
  • 林轩田机器学习基石笔记14:Validation

    0. 前言 之前的课程讲解了为了避免overfitting,可以使用regularization方法来解决。在之前的Ein" role="presentation" style="position:...

    2018-02-04 12:07
    133
  • 林轩田机器学习基石笔记16:Three Learning Principles

    0. 前言 上一节课讲解了机器学习中提升分类器泛化能力的一种方法–Validation。即讲数据分成训练样本和测试样本,用训练样本训练分类器,用测试样本筛选分类器,最后得到再测试样本中性能最好的分类...

    2018-02-04 19:31
    117
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部