博客专栏  >  云计算/大数据   >  机器学习

机器学习

本专栏专注于机器学习系列算法

关注
2 已关注
10篇博文
  • [机器学习一]之贝叶斯系列

    第1章 贝叶斯定理 1.1 基本概念 1.2 全概率公式 1.3 贝叶斯公式 1.4 参考文献 第2章 贝叶斯决策理论 2.1 贝叶斯决策理论 2.2 贝叶斯分类规则 2.2.1 决策错误概率(...

    2018-02-14 11:21
    344
  • [贝叶斯九]之EM算法

    一、简单介绍 EM(Expectaion Maximization)算法(又称为期望最大化方法)是一种迭代算法,Dempster等人在1977年总结提出来的。简单来说EM算法就是一种含有隐变量的概率...

    2018-02-27 17:12
    104
  • [贝叶斯八]之极大似然估计

    一、简单介绍 极大似然估计是根据观察数据来估计模型参数的方法,即“模型已定,模型未知”。它是参数估计的一种方法,请参考《概率论与数理统计(浙大第四版)》中参数估计。 举个例子,大家都知道抛硬币...

    2018-02-08 22:01
    44
  • [贝叶斯七]之正态分布贝叶斯决策

    贝叶斯是非常传统,理论简单,但是非常有效的一种机器学习方法。经过大量实验表明,贝叶斯方法是极具鲁棒性的。至今为止仍然有很多人在研究贝叶斯的基础理论,而且发现许多算法都可以由贝叶斯推导而来,所以贝叶斯是...

    2018-02-08 21:55
    461
  • [贝叶斯六]之朴素贝叶斯分类器设计

    同样,类似于[贝叶斯四]之贝叶斯分类器设计,我们用一个例子:字母分类,来阐述朴素贝叶斯分类器的设计。 老套路,搞个三部曲: 特征向量生成 决策函数设计 模型训练 在做问题分析之前,请先做数据...

    2018-02-07 21:50
    94
  • [贝叶斯五]之朴素贝叶斯

    一、前因 这一章节依然是基础知识,贝叶斯分类器的核心就是要计算出后验概率p(wi|x)p(wi|x)p(w_i|x),依据贝叶斯定理 p(wi|x)=p(x|wi)p(wi)p(x)p(wi|x...

    2018-02-07 16:56
    48
  • [贝叶斯四]之贝叶斯分类器设计

    这一小节我们将简单的阐述一般贝叶斯分类器设计的方法。分类器流程如下所示。 输入:d-dim 特征向量 计算决策函数值(针对每个类别) 选取最大的值 做出决策 输出结果 如下图可以清楚的表达整个...

    2018-02-06 22:12
    120
  • [贝叶斯三]之决策函数和决策面

    一、决策面(Decision Surfaces) 1.1 概念 如果输入的数据是一个LLL维空间特征,考虑一个MMM分类问题,那么分类器将会把这个LLL维空间的特征点分为MMM个区域。每个区域...

    2018-02-07 15:08
    350
  • [贝叶斯二]之贝叶斯决策

    生活中的许多决策都是不确定性的,比如明天是否下雨,我需要带伞么?这个时候就需要我们做出决策,如果认为明天会下雨,显然我们就会带上伞,否则不然。那么这个时候我们怎么判断我们的决策是否可信?又是否是最佳的...

    2018-02-04 22:05
    133
  • [贝叶斯一]之贝叶斯理论

    一、基本概念 贝叶斯理论是机器学习中一个核心方法,它由英国数学家托马斯贝叶斯在1763年发表的一篇论文中首先提出这个定理。贝叶斯定理是用来度量不确定性事件的,比如今天下雨概率,是一种概率模型。 在...

    2018-02-07 10:43
    108

计算机视觉
1327451

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部