鐘明系列十二:『32阶类自然数可抹完美平方幻方』

鐘明系列十二:『32阶类自然数可抹完美平方幻方』
※※※※※※
『鐘明「可抹負號」類自然數高次冪幻方的定義』
这类制作可以这样描述,一款32阶完美类自然数幻方,所有的数替换成它的平方数后仍然满足完美幻方。抹去负号后仍然满足完美幻方,抹去负号后再替换成它的平方数后仍然是完美幻方。则可以称为可抹类自然数完美平方幻方。
鐘明(四川達州)
※※※※※※
◆訊息◆(2016年1月16日早12:46分)
万先生:
      您好!
      送上一款32阶类自然数可抹完美平方幻方。
      满足,1,所有的行列以及所有的泛对角线1次和都等于幻和
                  2,所有的行列以及所有的泛对角线2次和都等于2次幻和。
       抹去负号后,所有的行列以及所有的泛对角线都等于1次幻和;所有的行列以及所有的泛对角线都等于2次幻和;
       这类完美类自然数平方幻方,8K阶的都存在。
四川:钟明
※※※
◆回復◆(早12:51分)
又是「雙面幻方」,……高溫度!
香港:萬樹軍
※※※※※※


32阶类自然数可抹完美平方幻方

















作者 钟明

















447 -76 -990 561 -820 705 343 -164 -392 115 997 -536 789 -762 -368 155 417 -86 -964 559 -814 735 329 -190 -410 109 1019 -522 779 -744 -370 133

-10 471 601 -904 645 -860 -204 277 49 -496 -640 929 -676 893 243 -302 -24 457 583 -922 667 -838 -214 267 47 -498 -610 959 -702 867 237 -308

229 -958 -44 -852 593 311 673 -488 -196 901 19 885 -632 -272 -666 449 251 -932 -54 -846 591 297 703 -506 -222 923 13 875 -618 -274 -648 479

-982 161 -786 -68 351 531 -446 713 1005 -154 823 123 -360 -566 389 -754 -972 191 -784 -94 321 525 -420 727 1011 -136 809 101 -378 -556 411 -752

-366 519 393 731 -986 -150 -774 111 331 -546 -434 -766 1023 173 803 -74 -372 537 407 709 -968 -140 -796 113 341 -576 -432 -740 993 179 829 -88

605 -262 691 459 -216 -946 7 -834 -614 291 -662 -500 239 919 -34 889 579 -284 685 469 -202 -944 25 -864 -636 317 -652 -494 241 905 -64 871

-690 -848 255 257 -30 -484 589 947 663 873 -200 -314 37 475 -620 -918 -688 -850 225 287 -4 -510 595 941 649 887 -218 -296 59 453 -630 -908

-808 -756 325 151 -396 -72 1009 549 769 725 -356 -176 435 97 -984 -516 -826 -750 347 137 -406 -90 1007 571 799 715 -382 -178 429 127 -970 -542

825 749 -348 -138 405 89 -1008 -572 -800 -716 381 177 -430 -128 969 541 807 755 -326 -152 395 71 -1010 -550 -770 -726 355 175 -436 -98 983 515

687 849 -226 -288 3 509 -596 -942 -650 -888 217 295 -60 -454 629 907 689 847 -256 -258 29 483 -590 -948 -664 -874 199 313 -38 -476 619 917

-580 283 -686 -470 201 943 -26 863 635 -318 651 493 -242 -906 63 -872 -606 261 -692 -460 215 945 -8 833 613 -292 661 499 -240 -920 33 -890

371 -538 -408 -710 967 139 795 -114 -342 575 431 739 -994 -180 -830 87 365 -520 -394 -732 985 149 773 -112 -332 545 433 765 -1024 -174 -804 73

971 -192 783 93 -322 -526 419 -728 -1012 135 -810 -102 377 555 -412 751 981 -162 785 67 -352 -532 445 -714 -1006 153 -824 -124 359 565 -390 753

-252 931 53 845 -592 -298 -704 505 221 -924 -14 -876 617 273 647 -480 -230 957 43 851 -594 -312 -674 487 195 -902 -20 -886 631 271 665 -450

23 -458 -584 921 -668 837 213 -268 -48 497 609 -960 701 -868 -238 307 9 -472 -602 903 -646 859 203 -278 -50 495 639 -930 675 -894 -244 301

-418 85 963 -560 813 -736 -330 189 409 -110 -1020 521 -780 743 369 -134 -448 75 989 -562 819 -706 -344 163 391 -116 -998 535 -790 761 367 -156

-416 107 1021 -530 787 -738 -376 131 423 -84 -966 567 -822 729 335 -188 -386 117 995 -528 781 -768 -362 157 441 -78 -988 553 -812 711 337 -166

41 -504 -634 935 -678 891 235 -310 -18 463 607 -898 643 -862 -212 269 55 -490 -616 953 -700 869 245 -300 -16 465 577 -928 669 -836 -206 275

-198 925 11 883 -626 -280 -642 455 227 -934 -52 -854 599 303 697 -482 -220 899 21 877 -624 -266 -672 473 253 -956 -46 -844 585 305 679 -512

1013 -130 817 99 -384 -564 413 -746 -974 185 -792 -92 327 533 -422 721 1003 -160 815 125 -354 -558 387 -760 -980 167 -778 -70 345 523 -444 719

333 -552 -426 -764 1017 181 805 -80 -364 513 401 733 -992 -142 -772 105 339 -570 -440 -742 999 171 827 -82 -374 543 399 707 -962 -148 -798 119

-638 293 -660 -492 247 913 -40 865 581 -260 693 467 -208 -952 1 -858 -612 315 -654 -502 233 911 -58 895 603 -286 683 461 -210 -938 31 -840

657 879 -224 -290 61 451 -622 -916 -696 -842 231 281 -6 -508 587 949 655 881 -194 -320 35 477 -628 -910 -682 -856 249 263 -28 -486 597 939

775 723 -358 -184 427 103 -978 -518 -802 -758 323 143 -404 -66 1015 547 793 717 -380 -170 437 121 -976 -540 -832 -748 349 145 -398 -96 1001 573

-794 -718 379 169 -438 -122 975 539 831 747 -350 -146 397 95 -1002 -574 -776 -724 357 183 -428 -104 977 517 801 757 -324 -144 403 65 -1016 -548

-656 -882 193 319 -36 -478 627 909 681 855 -250 -264 27 485 -598 -940 -658 -880 223 289 -62 -452 621 915 695 841 -232 -282 5 507 -588 -950

611 -316 653 501 -234 -912 57 -896 -604 285 -684 -462 209 937 -32 839 637 -294 659 491 -248 -914 39 -866 -582 259 -694 -468 207 951 -2 857

-340 569 439 741 -1000 -172 -828 81 373 -544 -400 -708 961 147 797 -120 -334 551 425 763 -1018 -182 -806 79 363 -514 -402 -734 991 141 771 -106

-1004 159 -816 -126 353 557 -388 759 979 -168 777 69 -346 -524 443 -720 -1014 129 -818 -100 383 563 -414 745 973 -186 791 91 -328 -534 421 -722

219 -900 -22 -878 623 265 671 -474 -254 955 45 843 -586 -306 -680 511 197 -926 -12 -884 625 279 641 -456 -228 933 51 853 -600 -304 -698 481

-56 489 615 -954 699 -870 -246 299 15 -466 -578 927 -670 835 205 -276 -42 503 633 -936 677 -892 -236 309 17 -464 -608 897 -644 861 211 -270

385 -118 -996 527 -782 767 361 -158 -442 77 987 -554 811 -712 -338 165 415 -108 -1022 529 -788 737 375 -132 -424 83 965 -568 821 -730 -336 187


































組成數,lzrs:1~1024。
※※※※※※


行/列/兩對角線/泛對角線◆:k(1)=-16,k(2)=11201200。
※※※※※※

◆行/列/兩對角線/泛對角線◆:k(1)=16400,k(2)=11201200。
※※※※※※
作品來稿時間:2016年1月16日。

張貼博客時間:2016年1月19日。
※※※※※※END

『鐘明結論(2016年1月19日前) 』
※※※※※※
目前解决的有关类自然数幻方的课题有(给出一种幻和的解);
一、n维偶阶类自然数均匀幻矩的存在性。
二、k阶类自然数幻方的存在性。
三、n维k阶简单类自然数幻方的存在性。
四、(2^n)k阶n维完美类自然数幻方的存在性。
五、2k阶同心类自然数均匀幻方的存在性。
六、2k(k>2)阶同心类自然数均匀标准幻立方的存在性。
七、n维(2k+1)阶3数类自然数稀疏幻方的存在性。
八、n维类自然数稀疏幻矩的存在性。
九、2^n阶多维k次类自然数幻方。
十、多维偶阶标准类自然数幻方个例。
十一、4p*4k阶类自然数完美幻矩的存在性。
十二、所有的均匀幻型都可以转化成与类自然数有关的幻型。
※※※※※※

鐘明先生2016年1月19日前交來的部份原創作品,由於體積過大,未有張貼,但也必需要用以下方式記載的,給後來的探索者在這些方面作出框架範圍,不走彎路;
◆(1),『12阶类自然数4维均匀标准幻方』
來稿時間:2016年1月12日(傍晚4:54分)。
組成數,lzrs:1~20736。
※※※
◆(2),『22阶8数类自然数稀疏标准幻立方』
來稿時間:2016年1月13日(傍晚6:42分)。
組成數,lzrs:1~3872。
※※※
◆(3),256階可抹類自然數4次幻方。
來稿時間:2016年1月19日(中午1:58分)。
組成數,lzrs:1~65536。
※※※
◆(4),32階類自然數可抹完美幻立方+標準平方幻立方。
來稿時間:2016年1月19日(中午2:31分)。
組成數,lzrs:1~32768。
※※※※※※

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/20489909/viewspace-1979251/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/20489909/viewspace-1979251/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值