類自然數幻方競賽題

類自然數幻方競賽題
※※※※※※
賽手資格:不分膚色種族,信仰國籍,年紀性別。
賽事的意境:借用網絡平台,借用幻方域地,以個人之單薄, 將數學最後的寶藏→→→自然數的密碼/類自然數,……始於足下, 向人類的世界作出展示。
※※※※※※
▲《一》第一道賽題名稱:6次等冪和「類自然數8階左右幻方」。
※※※
「類自然數」的定義:一個含負數的數群, 假如將裡面的負數看成正數時,整個數群的組成數可表列成1,2, 3,4,5,6,……的自然數,就稱這數群叫「類自然數」 的數群,這種組成數就叫:類自然數。
※※※
◆(1),賽題要求1。
使用「類自然數」:1~128,構成兩個幻和相同的8階幻方, 分別稱為:8階左幻方,8階右幻方。
――――――――――――――――
『8階左幻方』 『8階右幻方』
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
―――幻和:m。 ―――幻和:m。
※※
等冪和性質;
8階左幻方的「64個數字」在等號的一邊,8階右幻方的「 64個數字」在等號的另一邊。
構成:k=1,2,3,4,5,6。
★注,賽手完成幻方的同時,要寫出等冪和的列式, 格式如以下的範例。
等冪和的範例;
(-1),2,(-7),8,(-11),12,(-13), 14=(-3),4,(-5),6,(-9),10,(-15) ,16。
k=1得:4。
k=2得:748。
k=3得:1120。
組成數:-1,2,-3,4,-5,6,-7,8,-9,10, -11,12,-13,14,-15,16。
●請注意,範例主要是針對「類自然數等冪和」性質的解釋, 並不構成對賽題的任何暗示。
※※※
◆(2),賽題要求2。
『8階左幻方』和『8階右幻方』的組成數, 將裡面的負數抹去負號之後,合起來就可以表列成自然數:1,2, 3,4,5,6,……128。
使用這1~128的自然數,構造出兩個幻和=516的8階幻方, 稱為8階A幻方,8階B幻方。
――――――――――――――――
「8階A幻方」 「8階B幻方」
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-]◆[-][ -][-][-][-][-][-][-]◆
―――幻和:516。 ―――幻和:516。
※※
等冪和性質;
「8階A幻方」的64個數字在等號的一邊,「8階B幻方」 的64個數字在等號的另一邊。
構成:k=1,2,3,4,5,6。
★注,賽手完成幻方的同時,要完成等冪和的列式, 格式如以下的範例。
等冪和的範例;
1,4,6,7,10,11,13,16=2,3,5,8,9, 12,14,15。
k=1得:68。
k=2得:748。
k=3得:9248。
組成數:1,2,3,4,5,6,7,8,9,10,11, 12,13,14,15,16。
●請注意,範例主要是針對「自然數等冪和性質」的解釋, 並不構成對賽題的任何暗示。
※※※※※※
▲《二》第二道賽題名稱:類自然數16階k(1,2,3)= 0幻方。
※※※
◆(1),賽題要求。
使用「類自然數」:1~256,構造出一個16階幻方, 使得每行/每列/兩條對角線;
k=1時得0:表示幻差是0。
k=2時得0:表示幻平方差是0。
k=3時得0:表示幻立方差也是0。
※※
『類自然數16階k(1,2,3)=0幻方』
――――――――――――――――
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
◆[-][-][-][-][-][-][-][-][-][- ][-][-][-][-][-][-]◆
――幻差=幻平方差=幻立方差=0。
※※※
◆(2),此道賽題中正負數的運算示範。
用一個類自然數8階k(1,2)=0幻方作範例,詳細解釋(1) 裡面所述的k=1,和k=2的運算操作。
※※
『類自然數8階k(1,2)=0幻方』
――――――
[09][31][-11][-29][-42][-64][ 44][62]
[18][08][-20][-06][-49][-39][ 51][37]
[16][26][-14][-28][-47][-57][ 45][59]
[23][01][-21][-03][-56][-34][ 54][36]
[-17][-07][19][05][50][40][- 52][-38]
[-10][-32][12][30][41][63][- 43][-61]
[-24][-02][22][04][55][33][- 53][-35]
[-15][-25][13][27][48][58][- 46][-60]
――幻差=幻平方差=0。
◆詳細說明◆
a,組成數,類自然數:1~64。
b,行,列,兩對角線,k(1,2)=0:k=1時, 表示幻差是0,k=2時,表示幻平方差是0。
例如;9^k+31^k-11^k-29^k-42^k-64^ k+44^k+62^k
=
9^k+8^k-14^k-3^k+50^k+63^k-53^ k-60^k
=
9^k+18^k+16^k+23^k^-17^k-10^k- 24^k-15^k
=0。
【注:-15^2=-225,有別於第一道賽題, 第一道賽題假若出-15,平方時視作:(-15)^2=225。
●請注意,範例主要是針對k=1,k=2運算操作的解釋, 並不構成對賽題的其它暗示。
※※※※※※
▲《三》第三道賽題名稱:類自然數8階序數幻方。
※※※
◆(1),賽題要求。
使用「類自然數」:1~64,構成一個8階幻方。
使得幻方行1的8個數字,將裡面負數的負號抹去之後,是:1, 2,3,4,5,6,7,8。
使得幻方行8的8個數字,將裡面負數的負號抹去之後,是:25, 26,27,28,29,30,31,32。
如圖所示;
――――――
[01][02][03][04][05][06][07][ 08]
[---][---][---][---][---][---] [---][---]
[---][---][---][---][---][---] [---][---]
[---][---][---][---][---][---] [---][---]
[---][---][---][---][---][---] [---][---]
[---][---][---][---][---][---] [---][---]
[---][---][---][---][---][---] [---][---]
[25][26][27][28][29][30][31][ 32]
―――幻和:隨意。
※※※※※※
▲《四》賽題獎勵:三道賽題各設10個名額得獎。
第1名:神秘獎品。
第2名:神秘獎品。
第3名~第10名:各得香港郵政內部發行的套裝首日封一套。
投稿: manshukwan2013@gmail.com
★特別指出,以上的賽題等資料,沒有專利/版權限制, 可隨意分享引用。宣揚「自然數的密碼」和「類自然數」, 期待得到各方人士的鼎力支持。
※※※※※※
賽事已於昨天優先一天在兩大群組展開: 「中國幻方研究協會」「幻方競賽」 ,,,今早已傳來報捷。
浙江的黃劍潮先生已奪取其中一題的第一。
※※※※※※
中國香港:萬樹軍
2015年10月15日。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/20489909/viewspace-1814251/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/20489909/viewspace-1814251/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值