「图谱谜宮(7子)」(2019年3月11日)

本文通过解析手游谜题图谱谜宮中的数学谜题,深入探讨了类自然数(lzrs)的概念及其应用。类自然数是一种包含负数的数群,当将负数视为正数时,数群的组成可以排列为自然数序列。文章提供了多个谜题的解答,并介绍了类自然数的相关资源。

「图谱谜宮(7子)」(2019年3月11日)
※※※※※※
《一》上期答案
※※※
◆答案◆
――――――
6=【3-4+7】【-1+2+5+6】=12
6=【-1+2+5】【3-4+6+7】=12
――――――
(-1,2,3,-4,5,6,7)
※※※
◆答案◆
――――――
0=【-3-4+7】【1+2-5+6】=4
0=【1+2-4-5+6】【-3+7】=4
0=【1+2-3】【-4-5+6+7】=4
――――――
(1,2,-3,-4,-5,6,7)
※※※
◆答案◆
――――――
0=【3+4-7】【1+2+5-6】=2
0=【1+5-6】【2+3+4-7】=2
0=【1+3+4+5-6-7】【2】=2
0=【1+2+3-6】【4+5-7】=2
(1,2,3,4,5,-6,-7)
※※※※※※
《二》今期谜题
※※※
◆二级谜题◆
――――――
3=【?4 ?5 ?6】【?1 ?2 ?3 ?7】=9
3=【?1 ?2 ?3 ?6 ?7】【?4 ?5】=9
―――
A=?1,K=?2,V=?3,T=?4,B=?5,H=?6,Y=?7。
―――
3=【T+B+H】【A+K+V+Y】=9
3=【A+K+V+H+Y】【T+B】=9
――――――
※※※
◆三级谜题◆
――――――
5=【?4 ?5 ?6】【?1 ?2 ?3 ?7】=1
5=【?1 ?2 ?3 ?4 ?7】【?5 ?6】=1
5=【?1 ?2 ?5 ?6 ?7】【?3 ?4】=1
―――
A=?1,K=?2,V=?3,T=?4,B=?5,H=?6,Y=?7。
―――
5=【T+B+H】【A+K+V+Y】=1
5=【A+K+V+T+Y】【B+H】=1
5=【A+K+B+H+Y】【V1T】=1
――――――
※※※
◆四级谜题◆
――――――
5=【?4 ?5 ?6】【?1 ?2 ?3 ?7】=7
5=【?1 ?3 ?7】【?2 ?4 ?5 ?6】=7
5=【?1 ?4】【?2 ?3 ?5 ?6 ?7】=7
5=【?1 ?2 ?5 ?7】【?3 ?4 ?6】=7
―――
A=?1,K=?2,V=?3,T=?4,B=?5,H=?6,Y=?7。
―――
5=【T+B+H】【A+K+V+Y】=7
5=【A+V+Y】【K+T+B+H】=7
5=【A+T】【K+V+B+H+Y】=7
5=【A+K+B+Y】【V+T+H】=7
※※※※※※
利用手游谜题「图谱谜宮」,宣扬数学的新物质:类自然数(lzrs)。
※※※
類自然數(lzrs)的定義;
一個含負數的數群,假如將裡面的負數看成正數時,整個數群的組成數可以表列成1,2,3,4,5,6,……的自然數,就稱這數群叫「類自然數(lzrs)」的數群,這種組成數就叫「類自然數(lzrs)」。
( http://blog.itpub.net/20489909/viewspace-1317055/ )
※※※
类自然数(lzrs)简谱(繁体字版);
http://blog.itpub.net/20489909/viewspace-2153102/
※※※
类自然数(lzrs)简谱(简体字版);
http://blog.chinaunix.net/uid-20489909-id-5784649.html
※※※
类自然数(lzrs)的文章,首次翻译成英文;
http://www.zhghf.top/China/index02.htm
※※※
类自然数(lzrs)的文章,首次在海外出现;
2018年6月份收到一个信息,证实已经有一个外国人士,使用自己的称谓,发表了类自然数(lzrs)相关的文章。
※※※※※※
END

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/20489909/viewspace-2637838/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/20489909/viewspace-2637838/

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度与泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合与参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释与模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化与实际工程落地的相关从业者;工作限建议在1-5之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)与经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署与可扩展性设计,为后续工程化应用打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值