【数学建模集训系列】眼科病床安排问题——FCFS

%function sec_problem
%*********************************************************
% ※第二问代码:FCFS
% ※时间:2011/8/31
%*********************************************************
clear,clc
%**************根据术后恢复满足的正态分布随机产生术后恢复时间*****************
miu=[2.90 4.96 10.16 8.07 6.03];%各个正态分布均值
sigm=[0.69 0.59 1.56 2.36 1.82];%方差
num_type=[7 22 9 33 8];%各类病人数
for i=1:1:5
    shuhou{i,1}=(fix(normrnd(miu(i),sigm(i),num_type(i),1)))';%产生随机数,5*1单元阵列
    shuhou{i,1};
end
%**************计算可以入院病人的优先级,安排入院****************************
cha=693960;%matlab和excel日期之差
out1_time_num = xlsread('筛选_数据', 'FCFS', 'M2:N28');%前一组出院时间
in_order_type_time=xlsread('筛选_数据', 'FCFS', 'A2:C103');%门诊时间
%------------------计算优先级矩阵------------------------------
% 说明:值越小表示优先级越高,第二项为手术
%       白内障(单眼) 白内障(双眼) 青光眼  视网膜疾病  外伤
% 周日       3,1         2,1         4,2       4,2      1,1
% 周一       2,2         4,2         3,3       3,3      1,1
% 周二       2,1         4,1         3,2       3,2      1,1
% 周三       4,5         3,5         2,2       2,2      1,1
% 周四       4,4         3,4         2,2       2,2      1,1
% 周五       4,3         3,3         2,2       2,2      1,1
% 周六       3,2         2,2         4,3       4,3      1,1
%-------------------------------------------------------------
prio_mat=[3 2 4 4 1;2 4 3 3 1;2 4 3 3 1;4 3 2 2 1;4 3 2 2 1;4 3 2 2 1;3 2 4 4 1];
ssjg=    [1 1 2 2 1;2 2 3 3 1;1 1 2 2 1;5 5 2 2 1;4 4 2 2 1;3 3 2 2 1;2 2 3 3 1];
flag_visited=zeros(102,1);
in_order_type_time_flag=[in_order_type_time flag_visited];
ruyuan_mat=nan(102,1);
shoushu1_mat=nan(102,1);
shoushu2_mat=nan(102,1);
chuyuan_mat=nan(102,1);
tic
  for i=1:size(out1_time_num,1)
% for i=1:3
    to_day=out1_time_num(i,1);%当天excel时间
    m=find(in_order_type_time_flag(:,3)<to_day&in_order_type_time_flag(:,4)==0);
    if isempty(m)
       continue;
    else
        temp_in=in_order_type_time(m,:);%当天有机会入院的病人
        %判断当天星期几y=weekday(x),返回值y:周日-周六分别为1-7
        to_week=weekday(to_day+cha);
        %附加优先级:序号+类型+门诊时间+优先级
        for j=1:size(temp_in,1)
            if temp_in(j,2)==5
                prio(j,1)=0;
            else
                prio(j,1)= temp_in(j,1);
            end
            prio(j+1:end)=[];
        end
        temp_in=[temp_in prio];
        %按优先级选取与病床相同数量的病人:按优先级排序,优先级相同的按门诊顺序时间排
        temp_in_sort=sortrows(temp_in,4);
        if size(out1_time_num,1)<=size(temp_in_sort,1)
            num_2=out1_time_num(i,2);        
        else
            num_2=size(temp_in_sort,1);
        end
        temp_write=temp_in_sort(1:num_2,:);
        %计算excel表格写入范围,逐个入院
        for j=1:num_2%out1_time_num(i,2)        
            ruyuan_mat(temp_write(j,1))=to_day;
            %write_str=['D' num2str(temp_write(j,1)+1)];
            %xlswrite('筛选_数据',to_day,'FCFS',write_str);    %入院
            %------------------------------------------------
            %安排手术时间
            shoushu1_mat(temp_write(j,1))=to_day+ssjg(to_week,temp_write(j,2));
            if temp_write(j,2)==2
                shoushu2_mat(temp_write(j,1))=to_day+ssjg(to_week,temp_write(j,2))+2;
            end
            %随机产生出院时间
            chuyuan_mat(temp_write(j,1))=to_day+ssjg(to_week,temp_write(j,2))+...
                                    fix(normrnd(miu(temp_write(j,2)),sigm(temp_write(j,2)),1));
            %更新病床数
            index=find(out1_time_num(:,1)==chuyuan_mat(temp_write(j,1)));
            out1_time_num(index,2)=out1_time_num(index,2)+1;
            %------------------------------------------------
        end
        %标记已经入院的数据
        in_order_type_time_flag(temp_write(:,1),:)=1;    
    end    
 end
%write_str='D2:D103';
%xlswrite('筛选_数据',ruyuan_mat,'FCFS',write_str);    %入院
disp('安排完成')
toc
write_mat=[ruyuan_mat shoushu1_mat shoushu2_mat chuyuan_mat]
write_str='D2:G103';
xlswrite('筛选_数据',write_mat,'FCFS',write_str);
out1_time_num


电力市场的检由阳宪出化苎理 类型: PDF文件 电力市场 大小: 590 KB 电力市场轩修改日期: 2010/5/10 22:16 电路模拟方法在数学建模中的应用 对于公交汽车调度问题的求解 非典数学模型的建立与分析 公交车调度 公交车调度的规划数学模型 公交车调度问题数学模型 公交车调度问题的研究 公交车调度优化模型 关于_车灯线光源的优化设计_问题的光学思路 关于公交车调度的优化问题 管道切片的三维重建 国际数学建模竞赛二等奖获奖论文 纡多特征提取的识别算法数学建模优秀论文 基于利润最大化的奥运商业网点分布微观经济模型 考虑自愈的SARS的传播模型 利用切片的二维空间相关操作实现血管的三维重建 临时超市网点的规划模型研究 露天矿生产车辆安排计划优化设计 露天矿生产的车辆安排 露天矿生产的车辆安排_的模型和评述 露天矿生产的车辆安排A 夭矿生产的车辆安排B 美国数学建模论文格式 全国大学生数学建模2000年A题优秀论文-DNA分类模型 全国大学生数学建模竞赛 全国大学生数学建模竞赛2009年D题-讲解清华大学-姜启源 全国大学生数学建模竞赛论文格式规范 全国大学生数学建模竞赛论文写作模版 全国f类型: PDF文件赛作用浅析 全国娄大小:105 KB 修改日期: 2012/7/9 17:28 如何撰写众了想误比文 数据挖掘技术在小型商业网点布局问题的应用 数模竞赛论文模版css_ b2 数学建模2010A题评阅要点及参考答案 数学建模队员选拔MATLAB拟合 数学建模竞赛讲座2010A(清华大学姜启源) 数学建模竞赛新手教程 数学建模论文格式 数学建模论文-生猪价格 数学建模全国赛07年A题一等奖论文 数学建模全论文写作模板免费版 数学建模优秀论文 数学建模优秀论文 数学建模知识及常用方法P54 现实生活的数学描述_饮酒与驾车 血管的三维重建 血管管道的三维重建 血管切片的三维重建 血管三维重建的问题A 预测模型与案例 怎样写作数学建模竞赛论文 最佳公交路线选择模型周金健阎栋唐瑞 最优公交线路选择郝晓磊兰名荥李煜 1994-2009年全国大学生数学建模竞赛题目 1994年全国大学生数学建模竞赛优秀论文全集 2001年全国大学生数学建模竞t赛 2002高教社杯全国大学生数学建模竞赛 2002年彩票方案的优选模型--历年数学建模优秀论文大全 2003高教社杯全国大学生数学建模竞赛 2003年A题全国数学建模优秀论文 2003年全国大学生数学建模竞赛题目 2003年全国大学生数学建模竞赛优秀论文B关于露天矿生产的车辆安排的报告 2004-北京奥运会临时迷你超市-历年数学建模优秀论文大全 2004高教社杯全国大学生数学建模竞赛 2004年高教社杯全国大学生数学建模竞赛题-关于公务员招聘问题的一种数学模型 2004年中国大学生数学建模竞赛论文(电力市场的输电阻塞管理)l.pdf 2005-2009全国大学生数学数学建模竞赛参考答案 2005高教社杯全国大学生数学建模竞赛题目A_长江水质的评价和预测 2005年中国大学生数学建模竞赛论文(仓库容量有限条件下的随机存贮管理).pdf 2005年中国大学生数学建模竞赛论文(城市出租车交通规划综合模型).pdf 2005年中国大学生数学建模竞赛论文(交通网络的通行时间预测与最优路径决策)I 2005年中国大学生数学建模竞赛论文(排队论模型解决出租车最佳数量预测)| 2005年中国大学生数学建模竞赛论文(长江水质的评价和趋势分析模型).pdf 2005年中国大学生数学建模竞赛论文(长江水质的评价和趋势分析模型)l.pdf 2005年中国大学生数学建模竞赛论文 2006年全国一等奖数模论文 2007电工杯全国大学生数学建模竞赛论文 2007高教社杯全国大学生数学建模竞褰(中国人口增长预测模型) 2007高教社杯全国大学生数学建模竞赛(中国人口增长预测模型)川 2007年乘公交,看奥运- -历年数学建模优秀论文大全 2007年全国大学生数学建模A题论文 2007年全国大学生数学建模竞赛国家一等奖论文一手机”套餐"优惠几何 2007全国大学生数学建模B题_公交查询系统特等奖 2008A数模优秀论文数码相机定位模型 2008高教社杯全国大学生数学建模竞赛 数码相机定位 2008国际大学生数学建模一等奖论文--历年数学 建模优秀论文大全 2008年大学生数学建模竞赛A题优秀论文 2008年大学生数学建模竞赛A题优秀论文2 2008数学建模优秀论文B基于综合收费模型对高等教育学费标准的探讨 2008数学建模优秀论
相关推荐
2009高教社杯全国大学生数学建模竞赛题目之B题 眼科病床的合理安排 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务。 我们考虑某医院眼科病床的合理安排数学建模问题。 该医院眼科门诊每天开放,住院部共有病床79张。该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。 白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。做两只眼的病人比做一只眼的要多一些,大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。 外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。 其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。 该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做。当前该住院部对全体非急症病人是按照FCFS(First come, First serve)规则安排住院,但等待住院病人队列却越来越长,医院方面希望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院资源的有效利用。 问题一:试分析确定合理的评价指标体系,用以评价该问题病床安排模型的优劣。 问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院。并对你们的模型利用问题一中的指标体系作出评价。 问题三:作为病人,自然希望尽早知道自己大约何时能住院。能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间。 问题四:若该住院部周六、周日不安排手术,请你们重新回答问题二,医院的手术时间安排是否应作出相应调整? 问题五:有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页