慢查询

SELECT  top 10

    QS.creation_time '编译计划的时间'

      , QS.last_execution_time '上次执行计划的时间'

      , QS.execution_count '执行的次数'

      , QS.total_elapsed_time / 1000 '占用的总时间(秒)'

      , QS.total_physical_reads '物理读取总次数'

      , QS.total_logical_reads/execution_count N'每次逻辑读取次数'

      , QS.total_worker_time / 1000 'CPU 时间总量(秒)'

      , QS.total_logical_writes '逻辑写入总次数'

      , QS.total_logical_reads N'逻辑读取总次数'

      , QS.total_elapsed_time / 1000 N'总花费时间(秒)'

      , SUBSTRING(ST.text, ( QS.statement_start_offset / 2 ) + 1,

                  ( ( CASE statement_end_offset

                        WHEN -THEN DATALENGTH(st.text)

                        ELSE QS.statement_end_offset

                      END - QS.statement_start_offset ) / 2 ) + 1) AS '执行语句'

FROM    sys.dm_exec_query_stats AS QS CROSS APPLY

        sys.dm_exec_sql_text(QS.sql_handle) AS ST INNER JOIN

        ( SELECT    *

          FROM      sys.dm_exec_cached_plans cp CROSS APPLY

                    sys.dm_exec_query_plan(cp.plan_handle)

        ) DB

            ON QS.plan_handle = DB.plan_handle

where   SUBSTRING(st.text, ( qs.statement_start_offset / 2 ) + 1,

                  ( ( CASE statement_end_offset

                        WHEN -THEN DATALENGTH(st.text)

                        ELSE qs.statement_end_offset

                      END - qs.statement_start_offset ) / 2 ) + 1) not like '%fetch%'

           and QS.last_execution_time>'2017-09-20'

ORDER BY QS.total_logical_reads/execution_count DESC







--Blocked SQL: 
;with cte as (select replace(hostname,' ','') as hostname ,''''+replace(program_name,' ','')+'''' as program_name 
, loginame, db_name(a.dbid) AS DBname,spid,blocked,waittime/1000 as waittime,a.status,a.lastwaittype,a.cmd
,Replace(substring(b.text,1,340),'''','''') as sqlmessage,cpu 


from sys.sysprocesses as a with(nolock) 
cross apply sys.dm_exec_sql_text(sql_handle) as b 
where a.blocked>0 and sql_handle<>0x0000000000000000000000000000000000000000 
and waittime>2000 ) 
select replace(hostname,' ','') as hostname ,''''+replace(program_name,' ','')+'''' as program_name 
, loginame, db_name(a.dbid) AS DBname,spid,blocked,waittime/1000 as waittime,a.status,a.lastwaittype,a.cmd
,Replace(substring(b.text,1,340),'''','''') as sqlmessage,cpu 


from sys.sysprocesses as a with(nolock) 
cross apply sys.dm_exec_sql_text(sql_handle) as b 
where exists(select blocked from cte where cte.blocked=a.spid) 
and not exists (select spid from cte where cte.spid=a.spid) 
union all 
select * from cte

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/16131092/viewspace-2145206/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/16131092/viewspace-2145206/

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值