在游戏制作中实现坐标变换(转)

在游戏制作中实现坐标变换(转)[@more@]

   1. 如何根据坐标架进行点的坐标变换

  首先坐标架定义成

  

  struct PNT3D{

   double x,y,z;

  };

  

  struct FRAME{

   PNT3D O, OX, OY, OZ;

  };

  

  

  假设有一个点 p 定义在 frame 所在坐标系 WC(World Coordinate) 之中,也就是说 p 在 frame 之外。为了将 p 转入 frame,我们首先需要作平移

  

  p1 = p - frame.O;

  这个时候 p1 相当于定义在一个将 WC 平移到 frame.O 的一个坐标架之中。这个坐标架和 frame.O 供用坐标原点,但是三个坐标轴并不一定相同。为了得到 frame 中的三个坐标分量我们只须将 p1 和三个基矢量作点积

  

  WC->frame 变换公式:

  

  p2.x = p1*frame.OX = (p-frame.O)*frame.OX;

  p2.y = p1*frame.OY = (p-frame.O)*frame.OY;

  p2.z = p1*frame.OZ = (p-frame.O)*frame.OZ;

  

  其中 * 代表点积。这里所得到的 p2 就是 WC 中的 p 在 frame 中对应的点。到此为止我们完成了电从坐标架之外变换到坐标架内。同样的,我们也可以采用简单的方法把点从坐标架内变换到坐标架之外。

  

  假设 p 是 frame 之内的点,首先

  

  p1 = p.x*frame.OX + p.y*frame.OY + p.z*frame.OZ;

  

  上面的公式将 p 的各个分量作为权值将三个坐标架的基矢量累加起来,得到的 p1 相当于平移 WC 和 frame 重合坐标原点的坐标架中的点。接下来,自然是处理平移

  

  frame->WC 变换公式:

  

  p2 = p1 + freame.O;

   = p.x*frame.OX + p.y*frame.OY + p.z*frame.OZ + frame.O;

  

  p2 就是转换到 WC 的点。

  

   2.如何根据坐标架生成变换矩阵

  矩阵在图形程序中应用十分广泛。它可以表达更复杂的变换形式。这里所指的矩阵是左乘矩阵,即矩阵位于点的左边。

    2004.12.28.12.25.18.1.gif

  我们可以用一个矩阵来代表从坐标架外到坐标架中的变换,也可以用一个矩阵代表从坐标架之中到坐标架之外的变换。下面的 mat 是按照行优先规则存放的矩阵。从坐标架中变换到坐标架外 frame->WC 的矩阵如下

  

  frame->WC 变换矩阵:

  

  mat[0] = OX.x; mat[1] = OY.x; mat[2] = OZ.x; mat[3] = Oc.x;

  mat[4] = OX.y; mat[5] = OY.y; mat[6] = OZ.y; mat[7] = Oc.y;

  mat[8] = OX.z; mat[9] = OY.z; mat[10] = OZ.z; mat[11] = Oc.z;

  mat[12] = 0; mat[13] = 0; mat[14] = 0; mat[15] = 1;

  

  其中,OX, OY, OZ 是坐标架的三个基矢量,Oc 是坐标架的坐标原点。我们将这个矩阵乘以点 p(x,y,z,1)

  

  p1 = mat*p;

  我们可以得到 p1 就是 WC 坐标系下面的点。下面是这个矩阵的推导过程,如果觉得头大,可以跳过去。

  

   推导过程

  首先我们来看上面得到的根据一个坐标架,从坐标架内转换到坐标架外的公式

    2004.12.28.12.25.25.2.gif

  Px 是被转换的点,P1 是转换后的点。为了书写方便,我们把 frame.OX 写成 OX,其余类推。于是得到:

    2004.12.28.12.25.33.3.gif

  这个公式已经可以看到矩阵的影子了。为了进一步向 4*4 的矩阵靠近,我们采用齐次形式:

    2004.12.28.12.25.42.4.gif

  我们把它逐渐展开,我们就得到了这一大堆东西,这下子矩阵相乘的形式出来了。这里的 4*4 的矩阵,就是上面的 mat 数组。

  

  搞定了 frame->WC 的矩阵,我们现在来搞 WC->frame 的矩阵

  

  WC->frame 变换矩阵:

  

  mat[0] = OX.x; mat[1] = OX.y; mat[2] = OX.z; mat[3] = -(Oc.x*OX.x + Oc.y*OX.y + Oc.z*OX.z);

  mat[4] = OY.x; mat[5] = OY.y; mat[6] = OY.z; mat[7] = -(Oc.x*OY.x + Oc.y*OY.y + Oc.z*OY.z);

  mat[8] = OZ.x; mat[9] = OZ.y; mat[10] = OZ.z; mat[11] = -(Oc.x*OZ.x + Oc.y*OZ.y + Oc.z*OZ.z);

  mat[12] = 0; mat[13] = 0; mat[14] = 0; mat[15] = 1;

  

  写代码的时候把这一堆抄过去就行了。如果不想看推导,就跳过下面的部分。

  

   推导过程

  同样的我们根据上面的式子出发进行推导

    2004.12.28.12.26.10.5.gif

  在这里,我们把点也搞成了齐次形式,位的是更好的向 4*4 矩阵迈进。我们继续拆解上面第二个式子的右面部分

    2004.12.28.12.26.20.6.gif

  其实也很容易出来(不过炮炮是想了很长时间才想出来的:)。

  

   3.如何通过矩阵作点的坐标变换

  这个最好办了。我们这里讨论的矩阵都是左乘矩阵,所以把矩阵乘以点就完成了变换。

  

  x = M[0][0]*Px + M[0][1]*Py + M[0][2]*Pz + M[0][3];

  y = M[1][0]*Px + M[1][1]*Py + M[1][2]*Pz + M[1][3];

  z = M[2][0]*Px + M[2][1]*Py + M[2][2]*Pz + M[2][3];

  

  这里的 M 是一个 4*4 的二维数组,存放行优先的矩阵。

  

   4.曲线、曲面方程如何作变换

  曲线、曲面方程有参数方程、非参数方程等形式。当然曲线、曲面还可能由微分方程描述。这个时候微分方程如果没有公式解,事情就很麻烦。计算机中一般比较容易处理参数方程。参数方程作变换形式上很简单

    2004.12.28.12.26.33.7.gif

  右边的结果会得到一个矢量,最终可以得到 (F1x, F1y, F1z) 的形式,这是一个新的参数方程。如果曲线曲面由非参数方程描述 F(x,y,z)=0,比如

    2004.12.28.12.26.43.8.gif

  这个时候,你可以尝试解出 x,y,z:

  

  令 x = u,y = v,可以得到

    2004.12.28.12.26.53.9.gif

  这下得到参数方程了,可以按照前面讲的步骤作转换。最后你会得到曲线、曲面变换后的参数方程。接下来你可以尝试着消去这些中间参数 u,v。这个过程可能会比较艰难。

  

  如果遇到隐式方程,无法解出,比如

   2004.12.28.12.27.10.10.gif

  这是最倒霉的情况,求解是没希望的。当然,如果你不要求精确的公式,你还是可以先令 x=u, y=v,代入之后,用泰勒展开求的 z 的级数,这也是一个方法哦:

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/8225414/viewspace-951951/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/8225414/viewspace-951951/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值