package hgs.spark.hive
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SaveMode
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row
object WriteDatatoHive {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("WriteDatatoHive").setMaster("local")
val context = new SparkContext(conf)
val rdd = context.parallelize(List(("wd",22),("cm",25)), 2).map(x=>Row(x._1,x._2))
val builder = SparkSession.builder()
.appName("hiveApp")
.config("spark.sql.warehouse.dir","hdfs://bigdata00:9000/user/hive/warehouse/")
.enableHiveSupport()
.getOrCreate()
//import builder.implicits._
import builder.implicits._
val personShcema = StructType(
List(
//下面为一个列的描述,分别为 列名,数据类型,是否为空
StructField("name",StringType,true),
StructField("age",IntegerType,true)
)
)
val personDF = builder.createDataFrame(rdd, personShcema)
personDF.createOrReplaceTempView("personm")
//这个可以存储数据与hiveSQL兼容
builder.table("personm").write.insertInto("test.person")
//builder.sql("select * from personm").write.option("spark.sql.hive.convertMetastoreParquet", false)
//.mode(SaveMode.Append).saveAsTable("test.person")
context.stop()
}
}
case class person(name:String,age:Int)
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31506529/viewspace-2640728/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/31506529/viewspace-2640728/
915

被折叠的 条评论
为什么被折叠?



