Install Path Set For RAC

#########################################################################
    Install Path Set For RAC    edit by sky 201104    qq654268465
#########################################################################
##############################################################################################################################
         下面是在看oracle redeme文档时需要注意的地方
升级步骤为:升级Oracle Clusterware(滚动或非滚动)→安装database软件补丁集(oui交互或silent模式)→升级数据库版本(dbua或Manually)
         Rolling Upgrade和Non Rolling Upgrade在区别在于,Rolling Upgrade只停止一个node的资源,减少了停机时间
##############################################################################################################################
1.在相应文件中ORACLE_HOME和ORACLE_HOME_NAME两个变量的值的查找方法如下:
查看ORACLE_HOME_NAME:
cd /u01/app/oracle/oraInventory/ContentsXML
view inventory.xml
或图形界面下cd $ORACLE_HOME/oui/bin     ./runInstaller
2.响应文件中ORACLE_HOME和ORACLE_HOME_NAME两个变量对于Clusterware和RAC的升级值是不同的,分别对应CRS家目录和ORACLE_HOME家目录

 

3.在安装数据库软件补丁集时需要使用srvctl命令关闭所有的资源,只留集群节点中vip、gsd、ons三个资源

 

4.RAC环境下,upgrade打开数据库时,只能启动一个实例,所以必须设置cluster_database=false,否则启动时报错,所以必须在升级database版本之前执行如下:
$srvctl start listener –n sky1
$srvctl start listener –n sky2
$srvctl start asm –n sky1
$srvctl start asm –n sky2
$srvctl start service -d skydb

SQL> STARTUP NOMOUNT
SQL>alter system set cluster_database=false scope=spfile;
SQL>shutdown immediate


**************************************************************************
#crsctl query crs softwareversion sky1
#crsctl query crs activeversion sky1

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/16807927/viewspace-711804/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/16807927/viewspace-711804/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值