给定一个数组 A[0,1,…,n-1],请构建一个数组 B[0,1,…,n-1],其中 B 中的元素 B[i]=A[0]×A[1]×…×A[i-1]×A[i+1]×…×A[n-1]。不能使用除法。
示例:
输入: [1,2,3,4,5]
输出: [120,60,40,30,24]
提示:
所有元素乘积之和不会溢出 32 位整数
a.length <= 100000
【构建乘积数组】:对称遍历
解题思路
通过 B[i]=A[0]×A[1]×…×A[i-1]×A[i+1]×…×A[n-1],我们发现 B[i] 就是 A[i] 左边所有元素的积 乘 A[i] 右边所有元素的积。
这和分发糖果的操作思想一样,都是利用对称关系,经过两遍对称运算就能得到最终的结果。
对称遍历
- 从左往右遍历累乘,结果保存在数组 ret 中,此时 ret[i] 表示,A[i] 左边所有元素的乘积
- 然后从右往左遍历累乘,获取A[i] 右边所有元素的乘积
- 两边遍历之后得到的 ret,就是最终结果
代码
#include <iostream>
#include <vector>
using namespace std;
void print(vector<int> myvector){
for(int i=0;i<myvector.size();i++){
cout<<myvector[i]<<endl;
}
}
class Solution {
public:
vector<int> constructArr(vector<int>& a) {
int n = a.size();
vector<int> ret(n, 1);
int left = 1;
for (int i = 0; i < n; i ++) {
ret[i] = left;
left = left * a[i];
}
int right = 1;
for (int i = n-1; i >= 0; i --) {
ret[i] *= right;
right *= a[i];
}
return ret;
}
};
int main(){
vector<int> my_A={1,2,3,4,5};
Solution S;
print(S.constructArr(my_A));
system("pause");
return 0;
}