congzi1984
码龄18年
关注
提问 私信
  • 博客:24,523
    24,523
    总访问量
  • 32
    原创
  • 85,254
    排名
  • 260
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2007-05-30
博客简介:

congzi1984的专栏

查看详细资料
  • 原力等级
    当前等级
    2
    当前总分
    196
    当月
    2
个人成就
  • 获得374次点赞
  • 内容获得2次评论
  • 获得302次收藏
  • 代码片获得145次分享
创作历程
  • 24篇
    2024年
  • 7篇
    2020年
  • 1篇
    2017年
成就勋章
TA的专栏
  • SpringCloud
    2篇
  • 数据库
  • 多线程
  • 缓存
  • spark
    2篇
  • 人工智能
  • 生物
  • 大数据
    2篇
  • 并发编程
  • KAFKA
  • 分布式锁
  • 算法
  • 消息服务器
  • rocketmq
  • 分布式事务
  • hadoop
  • ribbon
  • Mybatis
  • axis
  • redis
    1篇
  • jvm
  • memcached
  • mongodb
  • mina
  • spring
  • mysql
  • spring session
  • spring mvc
  • linux
  • java
    1篇
  • 架构
兴趣领域 设置
  • 大数据
    hadoophivestormsparketl
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

多个索引干扰导致索引失效如何解决

因此,即使没有启用查询缓存,由于上述机制的存在,第二次查询仍然可以更快。如果查询的数据已经在操作系统缓存中,那么第二次查询可以直接从内存中读取数据,而不需要访问磁盘。第二次执行相同的查询时,数据库可以直接重用已有的执行计划,减少了解析和优化的时间。当查询再次执行时,如果所需的数据已经存在于缓冲池中,则不需要从磁盘读取,这样可以显著加快查询速度。当索引被首次使用时,其部分或全部可能被加载到内存中,后续查询可以直接利用缓存的索引来定位数据,从而加速查询。现在业务的需求是,查询半年内,已支付订单状态的总数。
原创
发布博客 2024.09.09 ·
1129 阅读 ·
29 点赞 ·
0 评论 ·
20 收藏

SQL优化:执行计划详细分析

如果可能的话,尽量确保参与连接的表都有有效的索引,尤其是对于连接条件中的列。因此,“Using index”通常指的是MySQL正在使用索引,但是否是覆盖索引取决于查询是否只需要索引中的列。如果查询条件涉及到索引中的列,并且查询选择的结果集也完全包含在这个索引中,那么它就是覆盖索引的一个例子。在一个包含复合索引的表上执行查询时,如果WHERE子句中的条件涉及到该索引的前缀字段,MySQL就可以利用索引下推技术在存储引擎层直接对索引进行筛选,从而减少需要返回给服务器层的数据量。这可能会影响到执行顺序。
原创
发布博客 2024.09.09 ·
1961 阅读 ·
24 点赞 ·
0 评论 ·
15 收藏

逐行讲解Transformer的代码实现和原理讲解:nn.Linear线性层原理

经过Transformer的12个块处理完之后,4批文本数据得到了一个矩阵[4, 8, 16],也就是每批数据都训练出了一个结果,在训练阶段,这个结果的作用是跟目标标签计算损失值,然后通过反向传播更新各个权重向量;在推理阶段就是输出每个字的向量表,目的是拿着这个向量表计算一个概率值,最大概率值就是输出结果了。【训练数据】【线性变换数据】想象一下你在玩一个很长的流水线游戏。在这个游戏中,你有一个球,你需要通过一系列的障碍物来让这个球到达终点。
原创
发布博客 2024.09.07 ·
1267 阅读 ·
25 点赞 ·
0 评论 ·
14 收藏

逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失

通过计算交叉熵损失并传入重塑后的张量,我们能够得到一个能够反映整个批次和序列预测准确性的单一损失值。这个损失值会被用于模型的训练过程,通过反向传播算法更新模型参数,从而提高模型对未来数据的预测能力。
原创
发布博客 2024.09.07 ·
661 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

LLM模型:代码讲解Transformer运行原理

为什么要取最后一个时间步,而不取所有的。假设我们有一个简单的文本生成任务,目的是根据前面的文本生成下一个词。为了简化讨论,我们假设词汇表只有几个词,比如。实际数据示例假设我们的输入序列是,我们希望模型根据这个序列生成下一个词。为了说明这一点,我们可以构造一个简单的示例。构造示例数据词汇表假设词汇表为。编码映射我们需要将词汇表中的每个词映射到一个整数。例如:'how' -> 2'are' -> 3'you' -> 4输入序列输入序列为,对应的编码序列为[0, 1]。构造张量。
原创
发布博客 2024.09.07 ·
1415 阅读 ·
41 点赞 ·
0 评论 ·
29 收藏

逐行讲解Transformer的代码实现和原理讲解:多头掩码注意力机制

通过计算查询向量和键向量之间的点积,我们得到了一个标量值,该值反映了这两个向量在多大程度上指向相同的方向。比如在训练“我喜欢范冰冰”这句话的时候,在预测我字的时候,需要根据我字预测下一个字,这个时候喜字是不能让模型看见的,比如模型预测出了我喜两个字以后,欢字是不能让模型看见的。假设我们有一个未归一化的得分向量 z=[1.0,2.0,3.0]z=[1.0,2.0,3.0],代表三个类别的得分。最终的矩阵维度是【第一个矩阵的行,第二个矩阵的列】。设向量 A = [2, 3],向量 B = [4, -1]。
原创
发布博客 2024.09.04 ·
1021 阅读 ·
25 点赞 ·
0 评论 ·
19 收藏

逐行讲解Transformer的代码实现和原理讲解:前馈神经网络

经过Transformer的12个块处理完之后,4批文本数据得到了一个矩阵[4, 8, 16],也就是每批数据都训练出了一个结果,在训练阶段,这个结果的作用是跟目标标签计算损失值,然后通过反向传播更新各个权重向量;在推理阶段就是输出每个字的向量表,目的是拿着这个向量表计算一个概率值,最大概率值就是输出结果了。【训练数据】【线性变换数据】想象一下你在玩一个很长的流水线游戏。在这个游戏中,你有一个球,你需要通过一系列的障碍物来让这个球到达终点。
原创
发布博客 2024.09.04 ·
1186 阅读 ·
20 点赞 ·
0 评论 ·
15 收藏

逐行讲解Transformer的代码实现和原理讲解:层归一化原理

内部协变量偏移是指当模型训练时,前面层的参数更新会导致后续层接收的输入分布发生变化,这使得网络难以学习。为了解决这些问题,提出了多种归一化技术,比如批量归一化(Batch Normalization)、实例归一化(Instance Normalization)、层归一化(Layer Normalization)等。这里我们只关注第一个样本的第一个时间步,其余部分的计算类似。,即有两个样本,每个样本有三个时间步,每个时间步有四个特征。可以看到,每个样本的每个时间步的特征都被归一化了。接下来,我们创建一个。
原创
发布博客 2024.09.04 ·
547 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

逐行讲解Transformer的代码实现和原理讲解:Token、向量化、位置向量运算

3vocab_size = len(word_to_idx) # 词汇表大小为44embedding_dim = 3 # 假设每个词的嵌入维度为3。
原创
发布博客 2024.09.03 ·
1459 阅读 ·
29 点赞 ·
0 评论 ·
28 收藏

AI生成图片,ChatGPT生成路虎女逆行打人插图。

图片3:路虎女下来打了男司机的脸蛋。图片2:逆行路虎女跟别人发生追尾。图片1:一个女的开着路虎车逆行。
原创
发布博客 2024.09.01 ·
866 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

基于Transformer架构训练LLM大语言模型:Transformer架构工作原理

它允许模型在给定一个序列的情况下,计算出序列中每个元素(如单词)与其他元素之间的关系。这种关系通过一个权重矩阵来表示,这个权重矩阵决定了在生成某个位置的输出时,应该更多地考虑哪些输入位置。多头注意力通过将上述过程重复多次来增强模型的能力,每次使用不同的线性变换(不同的权重矩阵)。最终,所有头的输出被拼接在一起,并通过一个额外的线性变换得到最终的输出。- 最后,经过一系列编码器和解码器层后的输出会通过一个softmax层,生成一个概率分布,表示模型对于给定输入最可能的输出预测。
原创
发布博客 2024.09.01 ·
1336 阅读 ·
27 点赞 ·
0 评论 ·
27 收藏

MYSQL整体架构以及SQL执行流程

处理数据的物理存储。:虽然在MySQL 8.0中已经移除了全局查询缓存,但在一些情况下,如使用了内存表或特定的缓存插件,仍然可能存在某种形式的缓存机制。:根据优化后的执行计划,MySQL执行器开始执行查询。:在较旧版本的MySQL中存在,用于缓存查询及其结果。:MySQL服务器接收到SQL查询后,会先对其进行语法解析,确保SQL语句符合MySQL的语法规则。例如,如果一个查询涉及多个表的连接,优化器会确定最有效的连接顺序。:查询结束后,MySQL会释放分配给该查询的资源,并且在适当的时候断开客户端连接。
原创
发布博客 2024.08.31 ·
1205 阅读 ·
18 点赞 ·
0 评论 ·
15 收藏

【原理篇】通俗理解LLM大语言模型的原理,训练一个女朋友

不需要任何算法、编程技术就可以理解LLM大语言模型的原理。比如输入一个“范”字,输出“范冰冰”三个字。女朋友:我们做一些我们爱做的事情吧。我:是啊,我们要干点啥好呢。女朋友:老公,你回来了啊。
原创
发布博客 2024.08.30 ·
234 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【实践篇】ChatGLM3-6B AI大模型的部署、微调训练智能客服

修改/mnt/workspace/apps/ChatGLM3/basic_demo/cli_demo.py,将默认的THUDM/chatglm3-6b修改为你的模型地址,比如我的是/mnt/workspace/models/chatglm3-6b。--model_name_or_path /mnt/workspace/models/chatglm3-6b: 指定预训练模型的位置。如果输入序列超过此长度,会被截断。--per_device_train_batch_size 2: 每个设备上的训练批次大小。
原创
发布博客 2024.08.29 ·
1276 阅读 ·
29 点赞 ·
0 评论 ·
19 收藏

【实践篇】AI Tools工具开发,通过Tools调用业务系统API

通过智能客服对话方式,理解客户的对话需要调用的API接口。代码:上面视频中有介绍。
原创
发布博客 2024.08.29 ·
305 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

【AI实践篇】使用JAVA、python从0到1实现AI知识库(简单文件版)

代码实现的详细讲解和代码获取方式请查看视频。AI知识库原理讲解、一步步调试JAVA实现AI知识库。(可以获取源码)_哔哩哔哩_bilibiliAI知识库原理讲解、一步步调试Python实现AI知识库。(可以获取源码)_哔哩哔哩_bilibili一 JAVA实现二 原理:使用余弦相似度查找匹配的文本三 python实现
原创
发布博客 2024.08.28 ·
224 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

实践篇 : AI编码辅助插件的安装和使用

支持 Java、Python、Go、JavaScript、TypeScript、C/C++、C# 等主流语言,同时兼容 Visual Studio Code、JetBrains IDEs 等主流编程工具。生成单测、生成注释、代码优化、代码解析、代码补全、bug排错。函数注释和行注释分开生成。JAVA、C++、Python、JAVASCRIP等。JAVA、C++、Python、JAVASCRIP等。JAVA、C++、Python、JAVASCRIP等。JAVA、C++、Python、JAVASCRIP等。
原创
发布博客 2024.08.25 ·
816 阅读 ·
25 点赞 ·
0 评论 ·
28 收藏

实践篇:AI大模型的Prompt提示词的结构和技巧

请根据以上$$之间的注意内容,将以下提供的翻译原文从中文翻译成英文,专业词汇要翻译准确,重要词汇不能删减。请根据以上$$之间的注意内容,并分析翻译结果。然后深度校正以上翻译,专业词汇要翻译准确,重要词汇不能删减。请写一篇作文——》请写一篇关于秋天的作文——》请以莫言的风格写一篇关于秋天的作文——》。我是一名三年级的小学生,请以李白的风格写一篇关于秋天的作文,要求100字以内。你是一个具有20年翻译经验的团队,精通中英双语,并拥有丰富的跨学科知识。例如我是一名小学生、中学生、大学生、医生、律师。
原创
发布博客 2024.08.25 ·
347 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

实践篇 : AI生成图片、AI精准翻译、AI情感分析

一定要注意专业术语和准确性,语句要通俗易懂、流畅、严谨,请优化以上翻译并重新输出。、根据对话内容进行情感分析,输出客服和客户的情感等级,分为七个等级:非常负面、负面、轻微负面、中性、轻微正面、正面、非常正面。之间的注意内容,将以下提供的翻译原文从中文翻译成英文,专业词汇要翻译准确,重要词汇不能删减。之间的注意内容,将以下提供的翻译原文从中文翻译成英文,专业词汇要翻译准确,重要词汇不能删减。之间的注意内容,并分析翻译结果。年经验的资深电子工程师,将以下中文翻译英文,专业词汇要翻译准确,重要词汇不能删减。
原创
发布博客 2024.08.25 ·
896 阅读 ·
24 点赞 ·
0 评论 ·
13 收藏

AI大模型底层原理 — 概念篇

DALLE、SORA、Midjourney、Stable Diffusion等。AI大模型其实就是一个或者多个模型文件,3)AI大模型是如何一步步训练的?文件内容=权重参数 + 向量数据。1.1.3 LLM大模型训练过程。【通过本章学习可以掌握】1.1.1 单模态大模型。1.1.2 多模态大模型。1)什么是AI大模型?2)有哪些AI大模型?
原创
发布博客 2024.08.25 ·
513 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏
加载更多