瑞雪兆我心
码龄4年
关注
提问 私信
  • 博客:76,640
    76,640
    总访问量
  • 38
    原创
  • 143,018
    排名
  • 817
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:因为刚好遇见你

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2021-03-29
博客简介:

contributed_l的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    562
    当月
    6
个人成就
  • 获得1,074次点赞
  • 内容获得28次评论
  • 获得1,064次收藏
  • 代码片获得2,674次分享
创作历程
  • 38篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    python
  • 人工智能
    自然语言处理知识图谱
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用 Seq2Seq 模型进行文本摘要

选择低于第3部分中定义的最大长度的文本和摘要。import numpy as np # 导入 numpy 库并重命名为 npcleaned_text = np.array(pre['cleaned_text']) # 将 'cleaned_text' 列转换为 numpy 数组cleaned_summary= np.array(pre['cleaned_summary']) # 将 'cleaned_summary' 列转换为 numpy 数组。
原创
发布博客 2024.03.31 ·
1787 阅读 ·
41 点赞 ·
0 评论 ·
35 收藏

FunASR 语音识别系统概述

FunASR(A Fundamental End-to-End Speech Recognition Toolkit)是一个基础的语音识别工具包,提供多种功能,包括等。
原创
发布博客 2024.03.30 ·
5956 阅读 ·
41 点赞 ·
0 评论 ·
27 收藏

实时语音识别(Python+HTML实战)

该项目支持麦克风实时录音功能,同时可以传入多种音频格式的文件(如 .wav, .pcm, .mp3 等),也支持视频输入(如 .mp4 等),以及多文件列表 wav.scp 输入。运行 FunASR-main/runtime/python/websocket/funasr_wss_server.py 文件,加载模型。项目提示所需要下载的库文件:pip install -U funasr 和 pip install modelscope。注:如果提示缺少什么模型,就 pip 下载什么模型。
原创
发布博客 2024.03.29 ·
2765 阅读 ·
24 点赞 ·
2 评论 ·
21 收藏

运动视觉增强影像技术非接触式振动测量系统

运动视觉增强影像技术非接触式振动测量系统,也称做高速相机全场振动测量系统、振动视觉增强影测量系统,是一种利用运动视觉增强影像技术,进行非接触式测量物体振动和运动的先进技术的系统。这种系统通常包括高速相机、激光传感器或其他传感器以及相关的数据处理软件。系统通过高速相机捕捉物体的运动和振动,激光传感器则用于精确测量物体的位移和形变。
原创
发布博客 2024.03.28 ·
1339 阅读 ·
29 点赞 ·
0 评论 ·
18 收藏

心理治疗聊天机器人的调查

这项调查旨在调查、分析和比较现有聊天机器人在心理治疗中的可行性和缺陷。调查指出了未来心理治疗聊天机器人所需的一系列任务。我们在公共数据库中检索了约1200篇相关文献,并选择了五种典型的和最先进的心理治疗聊天机器人。大多数最先进的心理治疗聊天机器人使用检索式方法生成对话。一些心理治疗聊天机器人结合了心理学理论,如认知行为疗法,来解决独特的心理问题。评估显示,聊天机器人可以初步识别特定类型的负面情绪,并给出相对恰当的回应。随机对照试验证明,心理治疗聊天机器人对一些有心理健康问题的人有用。
原创
发布博客 2024.03.27 ·
1914 阅读 ·
25 点赞 ·
0 评论 ·
33 收藏

数字心理健康中的人工智能聊天机器人

人工智能(AI)聊天机器人自2022年以来备受关注。凭借大数据、自然语言处理(NLP)和机器学习(ML)算法支持,它们具有扩展能力、提高生产力并在各个领域提供指导和支持的潜力。人工智能与人类(HAI)被提出,以帮助将人类价值观、同理心和道德考量融入AI中,以解决AI聊天机器人的局限性并增强其效力。心理健康是一个关键的全球问题,对个人、社区和经济都有重大影响。利用AI和ML的数字心理健康解决方案应运而生,以应对心理健康护理中的获取、社会污名和成本等挑战。尽管具有潜力,但围绕这些技术的道德和法律问题仍不确定。
原创
发布博客 2024.03.26 ·
1272 阅读 ·
28 点赞 ·
0 评论 ·
28 收藏

HuggingFace 模型使用指南

HuggingFace 模型共有三个部分组成:Tokennizer、Model 和 Post Processing。
原创
发布博客 2024.03.25 ·
2500 阅读 ·
23 点赞 ·
0 评论 ·
26 收藏

十七、BART

模型是仅使用 Transformer-结构的预训练语言模型。模型是仅使用 Transformer-结构的预训练语言模型。uto-egressiveransformers)模型是使用标准的 Transformer-模型整体结构的预训练语言模型。其在标准的 Seq2Seq Transformer Model 的基础之上,融合了 BERT 的 Bidirectional Encoder 和 GPT 的 Left-to-Right Recoder 的优点,使得它比 BERT 更适合文本生成的场景;
原创
发布博客 2024.03.24 ·
1125 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

大模型微调方法和技术路线

大模型中有一部分参数,是非常重要的,是影响大模型生成结果的关键参数,这部分关键参数就是上面提到的低维的本质模型)。QLoRA:Efficient Finetuning of Quantized Large Language Models,比 LoRA 多了一步量化(是一种在保证模型效果基本不降低的前提下,通过降低参数的精度,来减少模型对于计算资源的需求的方法),量化的核心目标是降低训练成本,特别是降后期的推理成本。只对有效部分的参数进行训练,是目前比较主流的微调方案,其中比较流行的有。
原创
发布博客 2024.03.23 ·
1288 阅读 ·
12 点赞 ·
0 评论 ·
19 收藏

分布式深度学习中的并行性

分布式深度学习是指使用包含多个工作线程的分布式系统来执行推理或训练深度学习。人们一直在考虑通过横向扩展来加速深度学习,并引入了许多并行化机制(即将计算分发给多个工作线程的方式),主要分为和三种类型。
原创
发布博客 2024.03.22 ·
1233 阅读 ·
22 点赞 ·
0 评论 ·
23 收藏

人工智能在心理健康评估和干预中的应用

在面对现代社会中不断增加的心理健康问题时,人工智能技术提供更精确、高效和实时的评估和干预手段。然而,保护数据隐私、解决伦理问题、提高模型可解释性以及跨学科合作都是前进的关键,这一领域的发展将继续促进技术的融合。
原创
发布博客 2024.03.21 ·
2179 阅读 ·
32 点赞 ·
0 评论 ·
16 收藏

卷积神经网络(CNN)

是一种具有等特点的又称作,是也称为的变种,擅长处理图像特别是图像识别等相关机器学习问题,比如图像分类、目标检测、图像分割等各种视觉任务。前馈神经网络(FNN)、全连接神经网络(FCNN)、多层感知机(MLP)、人工神经网络(ANN)这些术语在一定的上下文中可以指代相似的概念,但有时也有一些微妙的区别。
原创
发布博客 2024.03.20 ·
2072 阅读 ·
33 点赞 ·
0 评论 ·
27 收藏

主成成分分析(PCA 数据降维)

在很多场景中需要对多变量数据进行观测,在一定程度上增加了数据采集的工作量。是一种使用最广泛的数据降维算法(非监督的机器学习方法)。旨在降低数据的维数,通过保留数据集中的主要成分来简化数据集(选取出更便于人类理解的特征)。主成分分析的主要思想:上,这,是在出来的 k 维特征。
原创
发布博客 2024.03.19 ·
1242 阅读 ·
33 点赞 ·
0 评论 ·
21 收藏

十六、XLNet

的出发点是:能否融合自回归 AutoRegressive (AR) Language Model 与自编码 AutoEncoding (AE) Language Model 两种语言模型的优点(就是说如果站在 AR 的角度,如何引入与双向语言模型等价的效果;如果站在 AE 的角度看,它本身是融入双向语言模型的,如何抛掉表面的 [Mask] 标记,让预训练 Pre-Training 和微调 Fine-Tuning 数据保持一致)
原创
发布博客 2024.03.18 ·
1153 阅读 ·
29 点赞 ·
0 评论 ·
17 收藏

十四、GPT

的核心思想在于通过少量的数据寻找一个合适的初始化范围,使得模型能够在有限的数据集上快速拟合,并获得不错的效果(对于一个少样本的任务来说,模型的初始化值非常重要,从一个好的初始化值作为起点,模型能够尽快收敛,使得到的结果非常快的逼近全局最优解)。这使得模型能够从少量示例中学习新的类别,并在面对新的输入时进行准确分类。GPT-2 的目标旨在训练一个泛化能力更强的词向量模型,它并没有对 GPT-1 的网络进行过多的结构的创新与设计,只是使用了更多的网络参数和更大的数据集。GPT-1 语言模型通过大量的。
原创
发布博客 2024.03.17 ·
1341 阅读 ·
24 点赞 ·
0 评论 ·
17 收藏

十五、自回归(AutoRegressive)和自编码(AutoEncoding)语言模型

就是根据上文内容(或下文内容)预测下一个(或前一个)可能跟随的单词,就是常说的自左向右(或自右向左)的语言模型任务,即通过前 t - 1(或后 t - 1 ) 个 tokens 来预测当前时刻 t 的 token,代表的自回归语言模型有 ELMO 和 GPT。(DAE),是通过上下文单词来预测被 [Mask] 的 token(这些被 [Mask] 掉的单词其实就是在输入端加入的噪音,是典型的 的思路),通俗地被称为“完形填空”,代表的自编码语言模型有 Word2Vec(CBOW)和 BERT。
原创
发布博客 2024.03.16 ·
1660 阅读 ·
18 点赞 ·
0 评论 ·
15 收藏

十三、BERT

BERT(Bidirectional Encoder Representation from Transformers),基于 Transformer 的双向编码表示,模型训练时的两个任务是预测句子中被掩盖的词以及判断输入的两个句子是不是上下句。论文中介绍了2种版本:BERT_BASE 和 BERT_LARGE。两个 BERT 的模型相比于 Transformer 有更多的编码器层数、前馈神经网络和多注意力头,如 BERT_BASE 有12层、768 个隐藏层神经元,12个多注意力头;
原创
发布博客 2024.03.15 ·
1478 阅读 ·
30 点赞 ·
0 评论 ·
19 收藏

十二、Transformer

Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。
原创
发布博客 2024.03.14 ·
1526 阅读 ·
38 点赞 ·
0 评论 ·
23 收藏

十一、注意力机制(Attention Mechanism)

注意力机制是一种模仿人类视觉和认知系统的方法,允许神经网络在处理输入数据时集中注意力于相关的部分。核心目标也是从众多信息中选出对当前任务目标更加关键的信息。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。注意力机制最主要包括和。不同的注意力机制模型对输入序列的不同位置分配不同的权重,以便在处理每个序列元素时专注于最相关的部分。
原创
发布博客 2024.03.13 ·
1519 阅读 ·
22 点赞 ·
0 评论 ·
23 收藏

十、编码器-解码器模型(Encoder-Decoder)

Encoder-Decoder 有一个比较显著的特征就是它是一个 End-to-End 的学习算法,以机器翻译为例,将英语翻译成汉语这样的模型叫做 Seq2Seq。解码器嵌入层:将输出句子中的每个单词的 One-Hot 独热编码向量转换为嵌入向量。解码器输出层:将隐藏向量生成的输出句子转换成 One-Hot 独热编码向量的概率。解码器由三层组成:嵌入层、循环层和 输出层。编码器嵌入层:将输入句子每个单词的 One-Hot独热编码向量转换为嵌入向量。解码器循环层:将输出句子每个单词的嵌入向量生成隐藏向量。
原创
发布博客 2024.03.12 ·
1032 阅读 ·
22 点赞 ·
1 评论 ·
12 收藏
加载更多