一、前言
今天给大家分享的是,Python爬虫里url去重策略及实现。
二、url去重及策略简介
1.url去重
从字面上理解,url去重即去除重复的url,在爬虫中就是去除已经爬取过的url,避免重复爬取,既影响爬虫效率,又产生冗余数据。
2.url去重策略
从表面上看,url去重策略就是消除url重复的方法,常见的url去重策略有五种,如下:
1
# 1.将访问过的ur保存到数据库中
2
# 2.将访问过的ur保存到set(集合)中,只需要o(1)的代价就可以查询url
3
# 10000000*2byte*50个字符/1024/1024/1024=9G
4
# 3.url经过md5等方法哈希后保存到set中
5
# 4.用 bitmap方法,将访问过的ur通过hash函数映射到某一位
6
# 5. bloomfilter方法对 bitmap进行改进,多重hash函数降低冲突
三、看代码,边学边敲边记url去重策略
1.将访问过的ur保存到数据库中(初学使用)
实现起来最简单,但效率最低。
其核心思想是,把页面上爬取到的每个 url
存储到数据库,为了避免重复,每次存储前都要遍历查询数据库中是否已经存在当前 url
(即是否已经爬取过了),若存在,则不保存,否则,保存当前 url
,继续保存下一条,直至结束。
2.将访问过的ur保存到set内存中
将访问过的ur保存到set中,只需要o(1)的代价就可以查询url,取url方便快速,基本不用查询,但是随着存储的url越来越多,占用内存会越来越大。
1
# 简单计算:假设有1亿条url,每个url平均长度为50个字符,python里unicode编码,每个字符16位,占2
2
# 个字节(byte)
3
# 计算式:10^8 x 50个字符 x 2个byte / 1024 / 1024 / 1024 = 9G
4
# B M G
5
如果是
2
亿个url,那么占用内存将达
18
G,也不是特别方便,适合小型爬虫。
3.url经过md5缩减到固定长度
1
'''
2
简单计算:一个url经MD5转换,变成一个128bit(位)的字符串,占16byte(字节),方法二中一个url保守
3
估计占50个字符 x 2 = 100byte(字节),
4
计算式: 这样一比较,MD5的空间节省率为:(100-16)/100 = 84%(相比于方法二)
5
(Scrapy框架url去重就是采用的类似方法)
6
'''
7
# 维基百科看MD5算法
8
'''
9
MD5概述
10
设计者 : 罗纳德·李维斯特
11
首次发布 : 1992年4月
12
系列 : MD, MD2, MD3, MD4, MD5
13
编码长度 : 128位
14
结构 : Merkle–Damgård construction
15
MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可
16
以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家
17
罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在
18
RFC 1321 中被加以规范。
19
将数据(如一段文字)运算变为另一固定长度值,是散列算法的基础原理。
20
'''
MD5使用实例:
1
# 在python3中使用hashlib模块进行md5操作
2
import
hashlib
3
4
# 待加密信息
5
str01 =
'This is your md5 password!'
6
# 创建md5对象
7
md5_obj = hashlib.md5()
8
# 进行MD5加密前必须 encode(编码),python里默认是unicode编码,必须转换成utf-8
9
# 否则报错:TypeError: Unicode-objects must be encoded before hashing
10
md5_obj.update(str01.encode(encoding=
'utf-8'
))
11
12
print(
'XksA的原话为 :'
+ str01)
13
print(
'MD5加密后为 :'
+ md5_obj.hexdigest())
14
15
# result :
16
# XksA的原话为 :This is your md5 password!
17
# MD5加密后为 :0a5f76e7b0f352e47fed559f904c9159
4.用 bitmap方法,将访问过的ur通过hash函数映射到某一位
1
'''
2
实现原理:通过hash函数,将每个url映射到一个hash位置中,一个hash位可以只占用一个bit(位)大小,那
3
么相对于方法三:一个url占128bit(位),hash函数法的空间节省成百倍增长。
4
计算式:这样一比较,bitmap方法的空间节省率为:
5
(128-1)/128= 99.2%(相比于方法三)
6
(100 * 8 - 1)/(100*8)= 99.88%(相比于方法一)
7
## (缺点:容易产生冲突) ##
8
'''
9
# 维基百科看Hash 函数
10
'''
11
hash函数:
12
散列函数(英语:Hash function)又称散列算法、哈希函数,是一种从任何一种数据中创建小的数字“指纹”
13
的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。该函数将数据打乱混
14
合,重新创建一个叫做散列值(hash values,hash codes,hash sums,或hashes)的指纹。散列值通常
15
用一个短的随机字母和数字组成的字符串来代表。好的散列函数在输入域中很少出现散列冲突。在散列表和数
16
据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
17
'''
5.bloomfilter方法对 bitmap进行改进,多重hash函数降低冲突
1
# 维基百科看Bloomfilter
2
'''
3
# 基本概述
4
如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。
5
链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,
6
我们需要的存储空间越来越大。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为:
7
O(n),O(log n),O(n/k)
8
# 原理概述
9
布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个
10
点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点
11
有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。
12
# 优缺点
13
布隆过滤器可以用于检索一个元素是否在一个集合中。
14
优点是空间效率和查询时间都远远超过一般的算法。
15
缺点是有一定的误识别率和删除困难。
16
'''
17
# Bloomfilter介绍还可以看这里:https://blog.csdn.net/preyta/article/details/72804148
Bloomfilter底层实现:
1
# 源码地址:https://github.com/preytaren/fastbloom/blob/master/fastbloom/bloomfilter.py
2
import
math
3
import
logging
4
import
functools
5
6
import
pyhash
7
8
from
bitset
import
MmapBitSet
9
from
hash_tools
import
hashes
10
11
12
class
BloomFilter
(object)
:
13
"""
14
A bloom filter implementation,
15
which use Murmur hash and Spooky hash
16
"""
17
def
__init__
(self, capacity, error_rate=
0.0001
, fname=None,
18
h1=pyhash.murmur3_x64_128
()
, h2=pyhash.spooky_128
()
)
:
19
"""
20
:param capacity: size of possible input elements
21
:param error_rate: posi
22
:param fname:
23
:param h1:
24
:param h2:
25
"""
26
# calculate m & k
27
self.capacity = capacity
28
self.error_rate = error_rate
29
self.num_of_bits, self.num_of_hashes = self._adjust_param(
4096
*
8
,
30
error_rate)
31
self._fname = fname
32
self._data_store = MmapBitSet(self.num_of_bits)
33
self._size = len(self._data_store)
34
self._hashes = functools.partial(hashes, h1=h1, h2=h2, number=self.num_of_hashes)
35
36
def
_adjust_param
(self, bits_size, expected_error_rate)
:
37
"""
38
adjust k & m through 4 steps:
39
1. Choose a ballpark value for n
40
2. Choose a value for m
41
3. Calculate the optimal value of k
42
4. Calculate the error rate for our chosen values of n, m, and k.
43
If it's unacceptable, return to step 2 and change m;
44
otherwise we're done.
45
in every loop, m = m * 2
46
:param bits_size:
47
:param expected_error_rate:
48
:return:
49
"""
50
n, estimated_m, estimated_k, error_rate = self.capacity, int(bits_size /
2
),
None
,
1
51
weight, e = math.log(
2
), math.exp(
1
)
52
while
error_rate > expected_error_rate:
53
estimated_m *=
2
54
estimated_k = int((float(estimated_m) / n) * weight) +
1
55
error_rate = (
1
- math.exp(- (estimated_k * n) / estimated_m)) ** estimated_k
56
logging.info(estimated_m, estimated_k, error_rate)
57
return
estimated_m, estimated_k
58
59
def
add
(self, msg)
:
60
"""
61
add a string to bloomfilter
62
:param msg:
63
:return:
64
"""
65
if
not
isinstance(msg, str):
66
msg = str(msg)
67
positions = []
68
for
_hash_value
in
self._hashes(msg):
69
positions.append(_hash_value % self.num_of_bits)
70
for
pos
in
sorted(positions):
71
self._data_store.set(int(pos))
72
73
@staticmethod
74
def
open
(self, fname)
:
75
with
open(fname)
as
fp:
76
raise
NotImplementedError
77
78
def
__str__
(self)
:
79
"""
80
output bitset directly
81
:return:
82
"""
83
pass
84
85
def
__contains__
(self, msg)
:
86
if
not
isinstance(msg, str):
87
msg = str(msg)
88
positions = []
89
for
_hash_value
in
self._hashes(msg):
90
positions.append(_hash_value % self.num_of_bits)
91
for
position
in
sorted(positions):
92
if
not
self._data_store.test(position):
93
return
False
94
return
True
95
96
def
__len__
(self)
:
97
return
self._size
四、后言
学完这一期,我觉得,是时候拿起高数书,线代书,概率论,离散数学…好好学习数学了,哈哈哈!
附赠:七夕快乐大家。
边敲边学边做,坚持学习分享
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31556503/viewspace-2216250/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/31556503/viewspace-2216250/