辗转相除法求最大公约数(c语言)包含大整数

1.0版 辗转相除法
设有数字x,y 取k = x/y,b = x%y,则x = ky + b,如果一个数能够同时整除x和y,则必能同时整除b和y;而能够同时整除b和y的数也必能同时整除x和y,即x和y的公约数与b和y的公约数是相同的,其最大公约数也是相同的,则有f(x, y)= f(y, y % x)(y > 0),如此便可把原问题转化为求两个更小数的最大公约数,直到其中一个数为0,剩下的另外一个数就是两者最大的公约数。

int fun(int x, int y)
{
	return (!y)?x:fun(y, x%y);
}

2.0版本
因为取余对大整数来说是巨大的开销
采用类似前面辗转相除法的分析,如果一个数能够同时整除x和y,则必能同时整除x-y和y;而能够同时整x-y和y的数也必能同时整除x和y,即x和y的公约数与x-y和y的公约数是相同的,其最大公约数也是相同的,即f(x, y)= f(x-y, y),那么就可以不再需要进行大整数的取模运算,而转换成简单得多的大整数的减法。

fun(a,b){
	if(b>a)
	   fun(b,a);
	  while(b!=0){
		fun(a-b,b);
	}
	return a;
}

3.0 版
解法一的问题在于计算复杂的大整数除法运算,而解法二虽然将大整数的除法运算转换成了减法运算,降低了计算的复杂度,但它的问题在于减法的迭代次数太多,那么能否结合解法一和解法二从而使其成为一个最佳的算法呢?答案是肯定的。

首先从分析公约数的特点入手:

对于y和x来说,如果y=k * y1,x=k * x1。那么有f(y, x)= k * f(y1, x1)。

另外,如果x = p * x1,假设p是素数,并且y % p ! = 0(即y不能被p整除),那么f(x, y)= f(p * x1, y)= f(x1, y)。

注意到以上两点之后,我们就可以利用这两点对算法进行改进。

最简单的方法是,我们知道,2是一个素数,同时对于二进制表示的大整数而言,可以很容易地将除以2和乘以2的运算转换成移位运算,从而避免大整数除法,由此就可以利用2这个数字来进行分析。

取p = 2

若x, y均为偶数,f(x, y)= 2 * f(x/2, y/2)= 2 * f(x>>1, y>>1)

若x为偶数,y为奇数,f(x, y)= f(x/2, y)= f(x>>1, y)

若x为奇数,y为偶数,f(x, y)= f(x, y/2)= f(x, y>>1)

若x, y均为奇数,f(x, y)= f(x, x - y),

那么在f(x, y)= f(x, x - y)之后,(x - y)是一个偶数,下一步一定会有除以2的操作。

因此,最坏情况下的时间复杂度是O(log2(max(x, y))。

考虑如下的情况:

f(42, 30)= f(1010102, 111102)

= 2 * f(101012, 11112)

= 2 * f(11112, 1102)

= 2 * f(11112, 112)

= 2 * f(11002, 112)

= 2 * f(112, 112)

= 2 * f(02, 112)

= 2 * 112

= 6

根据上面的规律,具体代码实现如下:

BigInt gcd(BigInt x, BigInt y)
{
if(x < y)
return gcd(y, x);
if(y == 0)
return x;
else
{
if(IsEven(x))
{
if(IsEven(y))
return (gcd(x >> 1, y >> 1) << 1);
else
return gcd(x >> 1, y);
}
else
{
if(IsEven(y))
return gcd(x, y >> 1);
else
return gcd(y, x - y);
}
}
}

参考连接:https://www.ctguqmx.com/article/88

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值