LangChain + ChatGLM:深入理解RAG原理的智能知识问答系统

前言

在大语言模型(LLM, Large Language Model)技术飞速发展的时代,我们常常惊叹于它们的语言生成能力。然而,模型的知识截止点和幻觉问题(Hallucination)仍然制约着其在专业领域的应用。如何让语言模型“学会”理解并利用外部知识,成为了一个关键问题。

RAG(Retrieval-Augmented Generation,检索增强生成) 正是解决这一挑战的重要技术。它结合了 信息检索(Retrieval)生成模型(Generation) 的优势,通过在生成之前检索相关文档,显著提升回答的准确性与可解释性。

本文将以 LangChain + ChatGLM 为例,详细解析 RAG 的实现原理与技术细节,带你全面理解一个高效的知识问答系统是如何运作的。


1 RAG 原理解析

1.1 什么是 RAG?

RAG,全称 Retrieval-Augmented Generation(检索增强生成),是一种融合检索与生成的自然语言处理框架。
它的核心思想是:

“在生成答案前,先检索相关知识,再让模型基于检索结果进行生成。”

换句话说,RAG 并不是让语言模型“凭空回答”,而是让它先从外部知识库中找到与问题最相关的信息,再据此生成回答。这种方式显著提升了系统的可信度和领域适应性。

RAG 典型流程可分为两个阶段:

  1. Retrieval(检索阶段):从外部知识库中检索与问题最相关的内容。
  2. Generation(生成阶段):将检索到的内容与问题一起输入语言模型,生成回答。
    在这里插入图片描述

1.2 为什么需要 RAG?

传统大语言模型(如 GPT、ChatGLM)虽然拥有庞大的训练语料,但仍存在:

  • 知识过时:无法更新到最新事件。
  • 领域知识缺乏:在专业领域表现不佳。
  • 幻觉问题:可能生成逻辑合理但事实错误的回答。

RAG 则通过外部知识增强模型能力,实现以下优势:

  • 回答可追溯(基于具体来源)
  • 知识可更新(无需重新训练模型)
  • 成本低、效率高(仅需维护知识库)
  • 显著降低幻觉率

2 LangChain + ChatGLM 的整体架构

LangChain 是实现 RAG 思想的最佳工具之一。它为 LLM 应用提供了结构化、模块化的开发框架,使得“检索 + 生成”的流程可以清晰拆分并灵活组合。

结合 ChatGLM,本系统的流程如图所示,完整体现了一个典型的 RAG 管线。

在这里插入图片描述

步骤编号模块名称功能说明
1Local Documents本地文档输入,提供知识源。
2Unstructured Loader加载非结构化文档并提取文本。
3Text Splitter将长文本分割成小块。
4Text Chunks形成可处理的语义单元。
5Embedding将文本块转换为语义向量。
6VectorStore存储文本向量,形成知识库。
7Vector Similarity用于相似度匹配。
8Query用户输入问题。
9Query Embedding将问题转化为向量。
10Query Vector查询向量表示。
11Related Text Chunks检索到的相关知识内容。
12Prompt Template构建提示模板。
13Prompt将检索内容与问题拼接。
14LLM (ChatGLM)生成回答。
15Answer输出最终答案。

3 RAG 流程分解与实现细节

3.1 数据准备与加载(Retrieval 阶段)

3.1.1 文档加载(Unstructured Loader)

RAG 的第一步是建立知识源。LangChain 提供多种 Document Loader 来解析不同格式的文件:

  • TextLoader:纯文本。
  • PDFLoader:自动提取 PDF 内容。
  • UnstructuredLoader:支持复杂格式如 Markdown、HTML。

加载后,所有内容被统一转化为可操作的文本数据结构。

3.1.2 文本切分(Text Splitter)

由于 LLM 的输入限制(通常几千 token),长文档需要切分。LangChain 的 RecursiveCharacterTextSplitter 支持按段落或句子切分,保证每个文本块既不太长,又能保持语义完整。


3.2 向量化与知识库构建

3.2.1 文本向量化(Embedding)

在 RAG 中,Embedding(嵌入向量) 是实现语义检索的核心。
这一步通过模型(如 bge-large-zhtext2vecsentence-transformers)将文本转为高维向量,例如:

文本块 → [0.13, 0.55, -0.71, ...]

这些向量可被理解为文本在语义空间中的位置,使得语义相似的内容彼此接近。

3.2.2 向量数据库(Vector Store)

所有向量化文本会被存储到数据库(如 FAISS、Chroma、Milvus)。
向量数据库提供两大能力:

  • 高效检索:快速找到最相似的文本块;
  • 存储映射:保留原文,方便后续生成参考。

3.3 查询与检索(Retrieval 阶段)

当用户输入问题(Query)后,系统会执行以下步骤:

  1. 将问题通过同样的 Embedding 模型转为 查询向量(Query Vector)
  2. 与知识库中所有向量计算相似度;
  3. 选出前若干条最相似的文本块(Related Text Chunks)。

这一步的结果,就是 RAG 流程中的 检索增强(Retrieval Augmented) 核心部分——让模型获得外部知识支持。


3.4 答案生成(Generation 阶段)

3.4.1 构建提示模板(Prompt Template)

检索到的相关内容会被拼接入提示模板中,例如:

已知以下内容:
{context}

请回答以下问题:
{question}

这样,模型就能基于真实资料生成有依据的答案。

3.4.2 模型生成(ChatGLM)

ChatGLM 作为中文大语言模型,具备良好的指令理解与回答生成能力。
输入模板后,它会结合检索文本与问题上下文进行推理,最终生成自然语言答案。

3.4.3 输出与反馈

最后,系统将生成的回答展示给用户。至此,一个完整的“检索增强生成”过程完成。


4 RAG 与 LangChain 的结合优势

LangChain 将 RAG 流程拆分为独立组件,使每个环节(如 Embedding 模型、数据库类型、LLM)都能灵活替换。例如:

  • 向量模型可从 text2vec 换为 bge-m3
  • 数据库可从 Chroma 换为 Milvus
  • 模型可从 ChatGLM 换为 GPT-4

ChatGLM 支持本地部署,无需联网即可运行,保障企业数据隐私与安全。

知识来源明确,用户可查看回答对应的文档片段,且知识库可随时更新,无需重新训练模型。


5 应用场景

LangChain + ChatGLM 的 RAG 架构在多个领域都有实际应用:

  • 企业内部知识问答:快速查询内部手册、政策。
  • 学术资料助手:基于论文库自动回答研究问题。
  • 法律/医疗咨询系统:确保回答基于权威文档。
  • 智能客服系统:以FAQ文档为知识源,自动应答。

结语

RAG(检索增强生成)代表了语言模型向“知识增强”方向的关键进化。
它不再依赖模型本身的记忆,而是通过检索外部知识,使语言模型能够:

“带着资料思考,而不是凭印象回答。”

借助 LangChain 的强大生态与 ChatGLM 的中文语言能力,我们能够轻松构建一个高效、可控、可扩展的智能问答系统。
未来,随着 Embedding 模型、向量数据库与本地LLM技术的持续进步,RAG 将成为企业知识智能化的标准架构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cooldream2009

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值